Answer:
Since this is a linear equation
y = m x + b or
U = m F + b is a linear equation
when ΔF = (212 - 32) = 180
and ΔU = (60 - (-15)) = 75
m = 75 / 180 = 2.4 if converting F to U and a = .417
U = .417 F + b
If F = 32 then U = -15 and
-15 = .417 * 32 + b
b = -15 - 13.3 = -28.3 and our equation becomes
U = .417 F - 28.3
Check: let F = 212
U = .417 * 212 - 28.3 = 60 as it should
Answer:
(a) 
(b) 
(c) 
Solution:
As per the question:
Mass of Earth, 
Mass of Moon, 
Mass of Sun, 
Distance between the earth and the moon, 
Distance between the earth and the sun, 
Distance between the sun and the moon, 
Now,
We know that the gravitational force between two bodies of mass m and m' separated by a distance 'r' is given y:
(1)
Now,
(a) The force exerted by the Sun on the Moon is given by eqn (1):



(b) The force exerted by the Earth on the Moon is given by eqn (1):



(c) The force exerted by the Sun on the Earth is given by eqn (1):



Answer: This is an example of downregulation and upregulation.
Explanation:
Downregulation is a process in which cells decrease the production of one of their components, responding to an external stimulus. Upregulation, on the other hand, is when cells increase the production of one of their components in response to an external stimulus.
In this case, the decrease in insulin receptors would make the cell less sensitive to the hormone.
If there's a lot of insulin around those cells, the cell would have to decrease its sensitivity, otherwise, it would metabolise more glucose than the body needs. The contrary would happen if there was too little insulin around those cells, they would have to become more sensitive to it by increasing the number of receptors.
Hi,
An element’s atomic number tells how many protons an atom of this element has. Protons have a positive electric charge, while electrons have a negative one. If an atom is electrically neutral (as in this case, otherwise it should have been specified) the number of protons and electrons are equal. So, an atom of the element would have 59 electrons.
Hope this helps! If my answer was not clear enough or you’d like further explanation please let me know. Also, English is not my first language, so I’m sorry for any mistake.
The displacement of the rock will be the same as the total horizontal distance traveled. Here the rock's horizontal position is given by

so to find the horizontal distance it traversed, we need to know the time it took for the rock to return to the ground. We use the rock's vertical position over time to figure that out:

where
is the acceleration due to gravity. Then we find that
, at which point we find
.