Answer:
air pressure increases and temperature decreases
Explanation:
Hope this helps
 
        
             
        
        
        
E all of the answers above correlate to the student and his skateboard
        
                    
             
        
        
        
Answer:

Explanation:
Given:
- mass of water, 

 
- initial temperature of water, 

 
- initial temperature of pan, 

 
- mass of pan, 

 
- mass of water evapourated, 

 
- specific heat of water, 

 
- specific heat of aluminium pan, 

 
- latent heat of vapourization, 

 
<u>Using the equation of heat:</u>
<em>Here, initially certain mass of water is vapourised first and then the remaining mass of water comes in thermal equilibrium with the pan.</em>



 
        
             
        
        
        
Answer:
a) P = 1240 lb/ft^2
b) P = 1040 lb/ft^2
c) P = 1270 lb/ft^2
Explanation:
Given:
- P_a = 2216.2 lb/ft^2
- β = 0.00357 R/ft
- g = 32.174 ft/s^2
- T_a = 518.7 R
- R = 1716 ft-lb / slug-R
- γ = 0.07647 lb/ft^3
- h = 14,110 ft
Find:
(a) Determine the pressure at this elevation using the standard atmosphere equation.
(b) Determine the pressure assuming the air has a constant specific weight of 0.07647 lb/ft3. 
(c) Determine the pressure if the air is assumed to have a constant temperature of 59 oF.
Solution:
- The standard atmospheric equation is expressed as:
                            P = P_a* ( 1 - βh/T_a)^(g / R*β)
                           (g / R*β) = 32.174 / 1716*0.0035 = 5.252
                             P = 2116.2*(1 - 0.0035*14,110/518.7)^5.252
                             P = 1240 lb/ft^2
- The air density method which is expressed as:
                             P = P_a - γ*h
                             P = 2116.2 - 0.07647*14,110
                             P = 1040 lb/ft^2
- Using constant temperature ideal gas approximation:
                             P = P_a* e^ ( -g*h / R*T_a )
                             P = 2116.2* e^ ( -32.174*14110 / 1716*518.7 )
                             P = 1270 lb/ft^2