The equation of motion of a pendulum is:

where
it its length and
is the gravitational acceleration. Notice that the mass is absent from the equation! This is quite hard to solve, but for <em>small</em> angles (
), we can use:

Additionally, let us define:

We can now write:

The solution to this differential equation is:

where
and
are constants to be determined using the initial conditions. Notice that they will not have any influence on the period, since it is given simply by:

This justifies that the period depends only on the pendulum's length.
Answer : A. It decreases and then increases.
Explanation : Troposphere is the lowermost layer of atmosphere.
Stratosphere is next layer up to the troposphere. As the jet descends from stratosphere towards the troposphere, the temperature initially decreases and then at troposphere is roughly constant and then steadily increases.
So, option (A) is correct.
Things are rubbed against each other
Answer is 6 tires.
This is a projectile question.
First make sure units are consistent - express speed in m/s.
20 km/h = 20000m / 3600 s = 5.56 m/s
Assume the takeoff point of the ramp is at ground level (height, h, = 0m). We need to determine how long Joe is in the air, and use that time to calculate the horizontal distance he traveled.
Joe is traveling 5.56 m/s on a ramp angled at 20 degrees. There are vertical and horizontal components to his speed:
Vertical speed = 5.56sin20 = 1.90 m/s
Horizontal speed = 5.56cos20 = 5.22 m/s
An easy way to proceed is to calculate the time it takes for Joe’s vertical speed to reach 0m/s - this represents the time when Joe is at his maximum height and is therefore halfway through the trip. Double whatever time this is to find the total time of the trip. Remember he is decelerating due to gravity:
Time to peak:
a = Δv / Δt
-9.8 = -1.9 / Δt
Δt = 0.19s
Total trip time:
0.19 x 2 = 0.38s
Now that we have the total tome Joe is in the air, we can find the horizontal distance he traveled:
v = d / t
5.22 = d / 0.38
d = 1.98m
Now divide this total distance by the length of an individual tire to find the number of tires he will clear:
1.98 / 0.3 = 6.6 tires
Therefore he can jump 6 tires safely (he will land in the middle of the 7th tire).
Lots of steps I know but just try to think of the situation and keep track of the vertical and horizontal things!
Answer:
They speed up as temperature increases.
Explanation:
As temperatures increases within a molecule the particles will speed up.