Answer:
a. 12,600 N
b. 1290 kg
Explanation:
a. Impulse = change in momentum
F Δt = m Δv
F (0.192 s) = (59 kg) (0 m/s − 41 m/s)
F = -12,600 N
b. F = mg
12,600 N = m (9.8 m/s²)
m = 1290 kg (or 2,830 lbs)
Answer:
ΔL = L0 C ΔT
We need to find C the constant of expansivity
C = ΔL / (L0 ΔT)
C = .96 / (15.04 * 65) = 9.82 * 10^-4 / deg C
To solve this problem we will use the Newtonian theory about the speed of a body in space for which the speed of a body in the orbit of a planet is summarized as:

Where,
G = Gravitational Universal Constant
M = Mass of Planet
r = Radius of the planet ('h' would be the orbit from the surface)
The escape velocity is

Through this equation we can find the mass of the Planet in function of the distance, therefore



The orbital velocity is





The time period of revolution is,




Therefore the orbital period of the satellite is closes to 1 hour and 12 min
A basic mechanical device that is used for applying a force.
Examples are: inclined plane, lever, wedge, wheel and axle, pulley, and screw...Hope this helps, have a BLESSED and wonderful day!