A non-moving bike has wheels that aren't spinning and zero angular momentum, which makes it very easy for external torque to change the wheels' direction, making the bike harder to balance. Even when staying relatively motionless, though, a rider can balance a bike with some effort.
but tpla ybut tpla y but tpl but tpla y but tpla y but tpla ya y but tpla y but tpla y
The acceleration of the wagon along the ground is 3.6 m/s².
To solve the problem above, we need to use the formula of acceleration as related to force and mass.
Acceleration: This can be defined as the rate of change of velocity.
⇒ Formula:
- Fcos∅ = ma................. Equation 1
⇒ Where:
- F = Force
- ∅ = angle above the horizontal
- m = mass of the wagon
- a = acceleration of the wagon
⇒ make a the subject of equation 1
- a = Fcos∅/m..................... Equation 2
From the question,
⇒ Given:
⇒ Substitute these values into equation 2
- a = 44(cos35°)/10
- a = 44(0.8191)/10
- a = 3.6 m/s²
Hence, The acceleration of the wagon along the ground is 3.6 m/s²
Learn more about acceleration here: brainly.com/question/9408577
Answer:
Earth's water is always in movement, and the natural water cycle, also known as the hydrologic cycle, describes the continuous movement of water on, above, and below the surface of the Earth. Water is always changing states between liquid, vapor, and ice, with these processes happening in the blink of an eye and over millions of years.
Hope this helped!! :))
Explanation:
Answer:
1) current = I
2) Resistance = V/I
3) current = 2I
4) resistance = V/2I
5) current = 3I
6) Resistance = V/3I
7) Current = 4I
8) Resistance = V/4I
Explanation:
When one bulb is connected across the battery then let say the current is given as I
Then resistance is given as

When two bulbs are in parallel with the battery then
total current becomes twice of initial current
so we have
current = 2I
Resistance of the circuit is now

When three bulbs are in parallel with the battery then
total current becomes three times of initial current
so we have
current = 3I
Resistance of the circuit is now

When four bulbs are in parallel with the battery then
total current becomes four times of initial current
so we have
current = 4I
Resistance of the circuit is now
