1 kPa = 7.5 mmHg so 7.0 mmHg / 7.5 mmHg x 1 kPa = .93 kPa
101.3 kPa = 1 atm so 10 kPa / 101.3 kPa x 1 atm = .0987 atm
1 kPa = 7.5 mmHg so 15 kPa x 7.5 mmHg / 1 kPa = 112.5 mmHg
Moles of solute for both a and b are the same = 1 mol
<h3>Further explanation</h3>
Given
a 500 cm³ of solution, of concentration 2 mol/dm³
b 2 litres of solution, of concentration 0.5 mol/dm³
Required
moles of solute
Solution
Molarity shows the number of moles of solute in every 1 liter of solution or mmol in each ml of solution
Can be formulated :

a.
V = 500 cm³ = 0.5 L
M = 2 mol/L
n=moles = M x V
n = 2 mol/L x 0.5 L
n = 1 mol
b.
V = 2 L
M = 0.5 mol/L
n=moles = M x V
n = 0.5 mol/L x 2 L
n = 1 mol
Answer:
B. 214.02
Explanation:
1 mol of water weighs 18.015 gm and contains 6.023 × 10²³ molecules
From question, We have 7.15 × 10²⁴ molecules
Dividing we get (7.15 × 10 ²⁴) ÷ ( 6.023 × 10²³) = 11.871 molecules
Now, Weight of water = 11.871 × 18.015 = 213.85 which is nearer to option B
Answer:
It decreases.
Explanation:
Due to changes in the Coulombic force, the protons within the nucleus of the ion have a much easier time pulling at one fewer electrons. This way, the electrons are pulled closer to the center, causing the radius to decrease.
Answer:
potassium.
Explanation:
located at start of period 3, will have larger radius