Answer: 
Explanation:
a)
: This is a non polar covalent compound which are held by weak vanderwaal forces of attraction.
b)
: This is a covalent compound which is polar due to the presence of lone pair of electrons and are held by dipole-dipole forces of attraction.
c)
: These are joined by a special type of dipole dipole attraction called as hydrogen bond. It forms between electronegative nitrogen atom and hydrogen atom and is the strongest interaction.
d)
: This is a covalent compound and is non polar which are held by weak vanderwaal forces of attraction.
e)
: This is a covalent compound and is non polar which are held by weak vander waal forces of attraction.
Answer: Option (d) is the correct answer.
Explanation:
When two or more different substances are mixed together then it results in the formation of a mixture.
Mixture are of two types, that is, homogeneous mixture and heterogeneous mixture.
In homogeneous mixture, the constituent particles are distributed evenly throughout the mixture.
Whereas in heterogeneous mixture, the constituent particles are non-uniformly distributed.
Thus, we can conclude that mixtures are classified based on the distribution of particles in them.
Answer:
correct substrate to bind the active site of the enzyme.
Explanation:
For an enzyme to catalyze a chemical reaction it is very essential for the correct substrate to bind the active site of the enzyme.
The Active site consists of two parts
1.Binding site
2. Catalytic site
The binding site consists of amino acid residues that bind to the correct substrate while the catalytic site has the amino acids that lead to the catalysis.
The active site's shape is such that only the right substratum easily binds to it and thus the catalytic reaction occurs.
Answer: NaCl (s) → NaCl (aq)
Explanation:
Entropy is often associated with the disorder or randomness of a system. Therefore, in each reaction, it is necessary to evaluate if the disorder increases or decreases to understand what happens to the entropy:
1) KCl (aq) + AgNO₃ (aq) → KNO₃ (aq) + AgCl (s) - In this reaction, we have only aqueous reactants in the beginning and in the product we have a precipitate. The solid state is more organised than the liquid, consequently, the entropy decreases.
2) NaCl (s) → NaCl (aq) - In this case, oposite to the first one, we go from a solid state to an aqueous state. The solvation of the ions Na⁺ and Cl⁻ is random while the solid state is very organised. Therefore, in this reaction the entropy increases.
3) 2NaOH (aq) + CO₂ (g) → Na₂CO₃ (aq) + H₂O (l) - In this reaction, the reactants have higher entropy because of the gas CO₂. Therefore, the entropy decreases.
4) C₂H₅OH (g) → C₂H₅OH (l) - In this reaction, the reactant is a gas and the product a liquid. Therefore, the entropy decreases.