Answer: ₉₈²⁵³Cf
253 is a superscript to the left of the symbol, Cf, which represents the mass number, and 98 is a subscript to the left of the same symbol, which represents the atomic number.
Explanation:
1) The alpha decay equation shows that the isotope Fm - 257, whose nucleus has 100 protons and 157 neutrons, emitted an alpha particle (a nucleus with 2 protons and 2 neutrons).
2) Therefore:
i) the mass number decreased in 4, from 257 to 257 - 4 = 253.
2) the atomic number decreased in 2, from 100 to 100 - 2 = 98.
3) Hence the formed atom has atomic number 98, which is californium, Cf, and the isotope is californium - 253.
4) The item that completes the given alpha decay reaction is:
₉₈²⁵³ Cf.
5) The complete alfpha decay reaction is:
₁₀₀²⁵⁷ Fm → ₉₈²⁵³Cf + ₂⁴He
You can verify the mass balance:
257 = 253 + 4, and
100 = 98 + 2
We subtract the enthalpies of the reactants from that of the products:

Since this is < 0, this is an exothermic reaction.
False, energy conversion just means the energy is going to be used by another force
<span>Water is considered as a polar molecule because its electrons has an uneven distribution. It has a partial negative charge and a partial positive charge on both ends of the molecule. </span>I hope my answer has come to your help. God bless and have a nice day ahead!
Answer:
The transition from lower energy level to higher energy level require a gain of energy.
Explanation:
When transition occur from lower energy level to higher energy level require a gain of energy. Electron could not jump unto higher energy level without gaining thew energy.
When electron jump into lower energy level from high energy level it loses the energy.
For example electron when jumped from 2nd to 3rd shell it gain energy and when in return back to 2nd shell from 3rd shell it loses energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.