Answer:
Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
Step-by-step explanation:
Let
S = 2b/(b+a)^2 + 2a/(b^2-a^2) factor denominator
= 2b/(b+a)^2 + 2a/((b+a)(b-a)) factor denominators
= 1/(b+a) ( 2b/(b+a) + 2a/(b-a)) find common denominator
= 1/(b+a) ((2b*(b-a) + 2a*(b+a))/((b+a)(b-a)) expand
= 1/(b+a)(2b^2-2ab+2ab+2a^2)/((b+a)(b-a)) simplify & factor
= 2/(b+a)(b^2+a^2)/((b+a)(b-a)) simplify & rearrange
= 2(b^2+a^2)/((b+a)^2(b-a))
Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
We can write the function in terms of y rather than h(x)
so that:
y = 3 (5)^x
A. The rate of change is simply calculated as:
r = (y2 – y1) / (x2 – x1) where r stands for rate
Section A:
rA = [3 (5)^1 – 3 (5)^0] / (1 – 0)
rA = 12
Section B:
rB = [3 (5)^3 – 3 (5)^2] / (3 – 2)
rB = 300
B. We take the ratio of rB / rA:
rB/rA = 300 / 12
rB/rA = 25
So we see that the rate of change of section B is 25
times greater than A
Answer:
3.2
Step-by-step explanation:
12.8/4 which makes the answer 3.2
Answer:
-1/9
Step-by-step explanation:
y2-y1
x2-x1