Answer:
The force per unit length (N/m) on the top wire is 16.842 N/m
Explanation:
Given;
distance between the two parallel wire, d = 38 cm = 0.38 m
current in the first wire, I₁ = 4.0 kA
current in the second wire, I₂ = 8.0 kA
Force per unit length, between two parallel wires is given as;

where;
μ₀ is constant = 4π x 10⁻⁷ T.m/A
Substitute the given values in the above equation and calculate the force per unit length

Therefore, the force per unit length (N/m) on the top wire is 16.842 N/m
N2(g)<span> + 3H</span>2(g)<span> → 2NH</span><span>3(g) Is the answer. </span>
C because the air will push him closer to the space station
Answer:
<u>Question 2</u>
<u>Part (a)</u>
Chlorine: type of compound = chloride
Oxygen: type of compound = oxide
<u>Part (b)</u>
The iron reacts with water and oxygen to form rust.
A water molecule is made up of two hydrogen atoms joined to one oxygen atom: Di-hydrogen oxide.
<u>Question 3</u>
This circuit is in parallel.
The current in a parallel circuit splits into different branches then combines again before it goes back into the supply.
We are told that A₁ = 0.8 A
As the lamps have <u>equal resistance</u>, the current splits equally:
A₂ = 0.4 A
A₃ = 0.4 A
Then combines again:
A₄ = 0.8 A
This means that there is same current flow in both the circuit, or the circuit one has twice the power of circuit two.
According to ohm's law, the resistance is given as
I=V/R
Since the circuit one has twice the voltage, and resistance
I1=I2