Answer:
λ = 1.1×10⁸ m
Explanation:
Given data:
Frequency of wave = 2.7 Hz
Wavelength of wave = ?
Solution:
Formula:
Speed of wave = frequency × wavelength
Speed of wave = 3×10⁸ m/s
now we will put the values in formula.
3×10⁸ m/s = 2.7 s⁻¹ × λ
λ = 3×10⁸ m/s /2.7 s⁻¹
λ = 1.1×10⁸ m
Answer:
SO3 2- which is sulfite
i have to put this because it doesnt let me send the answer like that :)
Answer:
The heat that was used to melt the 15.0 grams of ice at 0°C is 4,950 Joules
Explanation:
The mass of ice in the beaker = 15.0 grams
The initial temperature of the ice = 0°C
The final temperature of the ice = 0°C
The latent heat of fusion of ice = 330 J/g
The heat required to melt a given mass of ice = The mass of the ice to be melted × The latent heat of fusion of ice
Therefore, the heat, Q, required to melt 15.0 g of ice = 15.0 g × 330 J/g = 4,950 J
The heat that was used to melt the 15.0 grams of ice = 4,950 Joules.
Salt hydrates are an important class of PCMs. An inorganic salt hydrate (hydrated salt or hydrate) is an ionic compound in which the ions attract a number of water molecules, which are then trapped inside the crystal lattice. A hydrated salt has the generic formula MxNy. nH2O.
<u>Answer:</u> The reaction proceeds in the forward direction
<u>Explanation:</u>
For the given chemical equation:

Relation of
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = ?
= equilibrium constant in terms of concentration = 
R = Gas constant = 
T = temperature = ![35^oC=[35+273]K=308K](https://tex.z-dn.net/?f=35%5EoC%3D%5B35%2B273%5DK%3D308K)
= change in number of moles of gas particles = 
Putting values in above equation, we get:

is the constant of a certain reaction at equilibrium while
is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
The expression of
for above equation follows:

We are given:



Putting values in above equation, we get:

We are given:

There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium
As,
, the reaction will be favoring product side.
Hence, the reaction proceeds in the forward direction