Answer:

Explanation:
Given that,
An infrared telescope is tuned to detect infrared radiation with a frequency of 4.39 THz.
We know that,
1 THz = 10¹² Hz
So,
f = 4.39 × 10¹² Hz
We need to find the wavelength of the infrared radiation.
We know that,

So, the wavelength of the infrared radiation is
.
A pebbled, uneven road would be easier to see at night because it minimizes the reflection of light from car’s light coming in the opposite direction. It is difficult to see when driving on the rainy day because the roadway reflects light from cars coming in the opposite <span>directions.</span>
Answer:
E.
Explanation:
In a galvanic cell, electrons flow from the anothe to the cathode.
I hope you got the answer
Answer:
The index of refraction of the liquid is n = 1.33 equivalent to that of water
Explanation:
Solution:-
- The index of refraction of light in a medium ( n ) determines the degree of "bending" of light in that medium.
- The index of refraction is material property and proportional to density of the material.
- The denser the material the slower the light will move through associated with considerable diffraction angles.
- The lighter the material the faster the light pass through the material without being diffracted as much.
- So, in the other words index of refraction can be expressed as how fast or slow light passes through a medium.
- The reference of comparison of how fast or slow the light is the value of c = 3.0*10^8 m/s i.e speed of light in vacuum or also assumed to be the case for air.
- so we can mathematically express the index of refraction as a ratio of light speed in the material specified and speed of light.
- The light passes through a liquid with speed v = 2.25*10^8 m/s :

- The index of refraction of the liquid is n = 1.33 equivalent to that of water.