"The movement of water into a nutrient-rich region of the phloem decreases the pressure in that region" is the statement that is not true according <span>to the pressure-flow hypothesis. The correct option among all the options that are given in the question is the fourth option or the last option. I hope it helps you.</span>
Answer and Explanation:
Data provided in the question
Force = 50N
Length = 5mm
diameter = 2.0m = 
Extended by = 0.25mm = 
Based on the above information, the calculation is as follows
a. The Stress of the wire is

here area of circle = perpendicular to the are i.e cross-sectional i.e
= 
= 
Now place these above values to the above formula

= 15.92 MPa
As 1Pa = 1 by N m^2
So,
MPa = 10^6 N m^2
b. Now the strain of the wire is

= 
Answer:
Option D 3.9
Explanation:
First, you need to use the correct equation which is the following:
COP = Q/W
Where:
Q = heat absorbed
W = work done by the pump
COP = coefficient of perfomance
We have all the data, so, all you need to do is replace in the above expression and you shoould get the correct result:
COP = 30 / 7.7
COP = 3.896
This result you can round it to 3.9. option D.
Using the addition of forces using right angled triangles. The resultant force sqaured. = 112.8 sqaured + 52.6 squared. So resultant force sqaured is 15490.6. So the resultant force is the sqaure root of this which is 124N to 3 significant figures
Awnser:
Elastic Potential Energy. Elastic potential energy is Potential energy stored as a result of deformation of an elastic object,
Explanation: