1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
3 years ago
15

The study and practice of map making is called:

Physics
1 answer:
Lana71 [14]3 years ago
5 0

The study and practice of map making is called Cartography.

You might be interested in
A thundercloud has an electric charge of 48.8 C near the top of the cloud and –41.7 C near the bottom of the cloud. The magnitud
IceJOKER [234]

Answer: 1.51 km

Explanation:

<u>Coulomb's Law:</u> The electrostatic force between two charge particles Q: and Q2 is directly proportional to product of magnitude of charges and inversely proportional to square of separation distance between them.

Or,   \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}}

Where Q1 and Q2 are magnitude of two charges and r is distance between them:

<u>Given:</u>

Q1 = Charge near top of cloud = 48.8 C

Q2 = Charge near the bottom of cloud = -41.7 C

Force between charge at top and bottom of cloud (i.e. between Q: and Q2) (F) = 7.98 x 10^6N

k = 8.99 x 109Nm^2/C^2

<u>So,</u>

\begin{aligned}&7.98 \times 10^{6}=\left(8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right) \frac{48.8 \mathrm{C} \times 41.7 \mathrm{C}}{\mathrm{r}^{2}} \\&r=\sqrt{\frac{1.8294 \times 10^{13}}{7.98 \times 10^{6}}}=1.514  \times 10^{3} \mathrm{~m}=1.51 \mathrm{~km}\end{aligned}

Therefore, the separation between the two charges (r) = 1.51 km

3 0
2 years ago
What change in entropy occurs when a 0.15 kg ice cube at -18 °C is transformed into steam at 120 °c 4.
Studentka2010 [4]

<u>Answer:</u> The change in entropy of the given process is 1324.8 J/K

<u>Explanation:</u>

The processes involved in the given problem are:

1.)H_2O(s)(-18^oC,255K)\rightarrow H_2O(s)(0^oC,273K)\\2.)H_2O(s)(0^oC,273K)\rightarrow H_2O(l)(0^oC,273K)\\3.)H_2O(l)(0^oC,273K)\rightarrow H_2O(l)(100^oC,373K)\\4.)H_2O(l)(100^oC,373K)\rightarrow H_2O(g)(100^oC,373K)\\5.)H_2O(g)(100^oC,373K)\rightarrow H_2O(g)(120^oC,393K)

Pressure is taken as constant.

To calculate the entropy change for same phase at different temperature, we use the equation:

\Delta S=m\times C_{p,m}\times \ln (\frac{T_2}{T_1})      .......(1)

where,

\Delta S = Entropy change

C_{p,m} = specific heat capacity of medium

m = mass of ice = 0.15 kg = 150 g    (Conversion factor: 1 kg = 1000 g)

T_2 = final temperature

T_1 = initial temperature

To calculate the entropy change for different phase at same temperature, we use the equation:

\Delta S=m\times \frac{\Delta H_{f,v}}{T}      .......(2)

where,

\Delta S = Entropy change

m = mass of ice

\Delta H_{f,v} = enthalpy of fusion of vaporization

T = temperature of the system

Calculating the entropy change for each process:

  • <u>For process 1:</u>

We are given:

m=150g\\C_{p,s}=2.06J/gK\\T_1=255K\\T_2=273K

Putting values in equation 1, we get:

\Delta S_1=150g\times 2.06J/g.K\times \ln(\frac{273K}{255K})\\\\\Delta S_1=21.1J/K

  • <u>For process 2:</u>

We are given:

m=150g\\\Delta H_{fusion}=334.16J/g\\T=273K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 334.16J/g}{273K}\\\\\Delta S_2=183.6J/K

  • <u>For process 3:</u>

We are given:

m=150g\\C_{p,l}=4.184J/gK\\T_1=273K\\T_2=373K

Putting values in equation 1, we get:

\Delta S_3=150g\times 4.184J/g.K\times \ln(\frac{373K}{273K})\\\\\Delta S_3=195.9J/K

  • <u>For process 4:</u>

We are given:

m=150g\\\Delta H_{vaporization}=2259J/g\\T=373K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 2259J/g}{373K}\\\\\Delta S_2=908.4J/K

  • <u>For process 5:</u>

We are given:

m=150g\\C_{p,g}=2.02J/gK\\T_1=373K\\T_2=393K

Putting values in equation 1, we get:

\Delta S_5=150g\times 2.02J/g.K\times \ln(\frac{393K}{373K})\\\\\Delta S_5=15.8J/K

Total entropy change for the process = \Delta S_1+\Delta S_2+\Delta S_3+\Delta S_4+\Delta S_5

Total entropy change for the process = [21.1+183.6+195.9+908.4+15.8]J/K=1324.8J/K

Hence, the change in entropy of the given process is 1324.8 J/K

4 0
3 years ago
So this helicopter pilot dropped me in the middle of an absolutely smooth frictionless
Llana [10]
Dang dude you are a soldier! Good job
5 0
2 years ago
Read 2 more answers
Speed is a scalar quantity that describes only the
Anna [14]

Answer:

magnitude of the velocity

Explanation:

4 0
3 years ago
A string vibrates at a frequency of 20Hz. what is its period?
Andreas93 [3]
We know, Period = 1/frequency = 1/20 sec.

So, your final answer is 0.05 sec

Hope this helps!
7 0
3 years ago
Other questions:
  • An alien spacecraft flies directly over a football stadium at a speed of 0.50c. if the proper length of the field is 100 yards,
    10·1 answer
  • When you sneeze, the air in your lungs accelerates from rest to 155 km/h in approximately 0.70 s . what is the acceleration of t
    7·1 answer
  • 9. An object starting with a velocity of 20m/s accelerates to
    11·1 answer
  • PLLLLLLLLLLLZ HELP 15 POINTS
    8·1 answer
  • A rifle with a weight of 25 N fires a 4.0 g bullet with a speed of 290 m/s.
    9·1 answer
  • Why is wood a renewable resource?
    13·1 answer
  • The coefficient of kinetic friction between an object and the surface upon which it is sliding is 0.46. The weight of the object
    10·1 answer
  • Lou’s latest invention, aimed at urban dog owners, is the X-R-Leash. It is made of a rubber-like material that exerts a force Fx
    6·1 answer
  • The rate of change of momentum of a body free falling under gravity is equal to its? A. Velocity B. kinetic energy C. power D. w
    15·2 answers
  • edward travels 150 kilometers due west and then 200 kilometers in a direction 60 degrees north of west.what is his displacement
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!