1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
butalik [34]
3 years ago
13

Find the two square roots of 81

Mathematics
1 answer:
pishuonlain [190]3 years ago
3 0
9 is one of them I think
You might be interested in
Oakley works at a factory that packs products in two
kobusy [5.1K]

ok first you need to add e and 4 and get 95 out of haha

4 0
3 years ago
Which lines are the directrices of the ellipse?
algol [13]

The lines that are the directrices of the ellipse is B. x = −3.25 and x = 9.25.

<h3>How to calculate the ellipse? </h3>

From the information given, the equation of parabola will be:

= (x - 3)²/5² + (y - 2)²/3² = 1

Hence, h = 3, k = 2, a = 5, b = 3

e = ✓1 - ✓3²/5²

E = 4/5 = 0.8

The directix will be:

x = 3 + 5/0.8

x = 9.25

x = 3 - 5/0.8

x = -3.25

Therefore, lines that are the directrices of the ellipse is x = −3.25 and x = 9.25.

Learn more about ellipse on:

brainly.com/question/16904744

4 0
2 years ago
Guiouogoiuouiouiouioiuoui
inna [77]

I don't know what this is but for some reason its funny

6 0
3 years ago
Read 2 more answers
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
The population of Centerville increases each year. The function C(t) = P(1 +r)^t represents the population of centerville at yea
strojnjashka [21]

Answer:

P represents the population in year 0 ⇒ D

Step-by-step explanation:

* Lets explain the exponential growth function

- The exponential growth function is f(x) = a (1 + r)^t, where a is the initial

  amount (at t = 0), (1 + r) is the factor of growth , r is the rate of growth

  in decimal ant is the time of growth

* Lets solve the problem

∵ The function C(t) = P(1 + r)^t represents the population of

  centerville at year t, where P is the initial population and r is the

  rate of increase

- Ex: If your investment is increased 10% annually, then that means

 each year, your total has multiplied itself by 110% (the growth factor

 is 1 + 10/100 = 1.1)

∴ (1 + r) is the factor grows each year

∵ C(t) = P(1 + r)^t

∴ C depends on P(starting population) , r(the increasing rate and

   t(the time in year)

∵ r is the rate of increase means the percentage of increasing , then

  0 < r < 1

∴ r is not less than 0

∵ P is the initial amount when t = 0

∴ P represents the population in year 0

4 0
3 years ago
Read 2 more answers
Other questions:
  • Please help me I don't know how to do this
    11·2 answers
  • 7 times 7 times 7 times 10 times 3
    14·2 answers
  • Pls help, easy geometry question
    5·2 answers
  • 5. find the missing value (s) so that the line segments are parallel.
    12·1 answer
  • Identify the range of the function shown in the graph.<br>​
    15·1 answer
  • Help please and thank you
    14·1 answer
  • Travis has hired Charlie and Dora to plant flowers . Dora can plant 150 flowers in the same time it takes Charlie to plant 120 f
    14·1 answer
  • I need help with this one
    6·1 answer
  • 10. BRO SOMEONE HELP ME IM STUCK ON THIS
    15·1 answer
  • Questions What is an amount between $2 and $10? (A) __________ What is an amount between $10 and $20? (B) __________ What is an
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!