1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murrr4er [49]
3 years ago
13

A baseball is thrown straight up from a building that is 25 meters tall with an initial velocity v = 10 m/s. How fast is it goin

g when it hits the ground?
Physics
1 answer:
Yanka [14]3 years ago
3 0

Answer:-24,5m/s

Explanation: what we have here is a UALM with these gravity as acceleration (-9.8 m/s^2). The initial position is 25 m and initial speed is 10m/s.

Speed and gravity are increasing in the opposite direction, speed upwards and gravity downwards, while the position is also upwards, depending on your reference system.

The first thing I need to know is the maximum high it will reach.

Hmax=- S(0)^2/2g=

S= speed.

0= initial

G= gravity

Hm= 100/19,6= 5.1 m

So, the ball will go 5,1 m higher than the initial position, and from there it will fall free.

Then, I need to know how long it takes to fall. For that we use UALM equation:

X(t)= X(0) + S(0)*t + (A*t^2)/2.

X: position

S: speed

A: acceleration

T:time

0: initial

0 = 25m +10*t -(9.8 * t^2)/2

Solving the quadratic equation we get

T= 3,5 sec. ( Negative value for time is impossible)

So now we know that the ball to go up and then fall needs 3,5 sec.

Let's see how long it takes to go up:

30,1=25+10*t-4,9*t^2

0=-5,1+10*t-4,9*t^2

T= 1 sec. So it will take 1 sec to the ball to reach the maximum high and 0=speed and then it'll fall during the resting 2,5 sec

Finally, to know the speed just before it touches the ground, we use the following formula:

A= (St-S0)/t

-9.8m/s^2 = (St- 0m/s)/ 2,5s

-24,5 m/s= St

-24,5 m/s is the speed at 3,5 sec, which is the time just before falling

You might be interested in
The Burj Khalifa is the tallest building in the world at 828 m. How much work would a man with a weight of 700 N do if he climbe
Hoochie [10]

Answer:

579600J

Explanation:

Given parameters:

Height of the building  = 828m

Weight of the man  = 700N

Unknown:

Work done by the man  = ?

Solution:

The work done by the man is the same as the potential energy expended.

 Work done:

             Work done  = Weight x height  = 700 x 828

        Work done  = 579600J

6 0
3 years ago
A man whose mass is 69 kg and a woman whose mass is 52 kg sit at opposite ends of a canoe 5 m long, whose mass is 20 kg. Suppose
dusya [7]

Answer:

the canoe moved 1.2234 m in the water

Explanation:

Given that;

A man whose mass = 69 kg

A woman whose mass = 52 kg

at opposite ends of a canoe 5 m long, whose mass is 20 kg

now let;

x1 = position of the man

x2 = position of canoe

x3 = position of the woman

Now,

Centre of mass = [m1x1 + m2x2 + m3x3] / m1 + m2 + m3

= ( 69×0 ) + ( 52×5) + ( 20× 5/2) / 69 + 52 + 20

= (0 + 260 + 50 ) / ( 141 )

= 310 / 141

= 2.19858 m

Centre of mass is 2.19858 m

Now, New center of mass will be;

52 × 2.5 / ( 69 + 52 + 20 )

= 130 / 141

= 0.9219858 m  { away from the man }

To get how far, the canoe moved;

⇒ 2.5 + 0.9219858 - 2.19858

= 1.2234 m

Therefore, the canoe moved 1.2234 m in the water

5 0
3 years ago
When you jump from an elevated position you usually bend your knees upon reaching the ground. By doing this, you make the time o
dsp73

Answer:

c. about 1/10 as great.

Explanation:

While jumping form a certain height when we bend our knees upon reaching  the ground such that the time taken to come to complete rest is increased by 10 times then the impact force gets reduced to one-tenth of the initial value when we would not do so.

This is in accordance with the Newton's second law of motion which states that the rate of change in velocity is directly proportional to the force applied on the body.

Mathematically:

F\propto\frac{d}{dt} (p)

\Rightarrow F=\frac{d}{dt} (m.v)

since mass is constant

F=m\frac{d}{dt}v

when dt=10t

then,

F'=m.\frac{v}{10\times t}

F'=\frac{1}{10} \times \frac{m.v}{t}

F'=\frac{F}{10} the body will experience the tenth part of the maximum force.

where:

\frac{d}{dt} = represents the rate of change in dependent quantity with respect to time

p= momentum

m= mass of the person jumping

v= velocity of the body while hitting the ground.

7 0
3 years ago
What distance is covered by an airplane traveling at a velocity of 660 miles per hour in 3.5 hours?
N76 [4]

As per the question, the velocity of the airplane [v] = 660 miles per hour.

The total time taken by airplane [t] = 3.5 hours.

We are asked to determine the total distance travelled by the airplane during that period.

The distance covered [ S] by a body is the product of velocity with the time.

Mathematically distance covered = velocity × total time

                                                      S = v × t

                                                        = 660 miles/hour ×3.5 hours

                                                        = 2310 miles.

Hence, the total distance travelled by the airplane in 3.5 hour is 2310 miles.

4 0
3 years ago
Two identical bowling balls are rolling on a horizontal floor without slipping. The initial speed of both balls is v = 10 m/s. B
Lapatulllka [165]

Answer:

The difference between frictionless ramp and a regular ramp is that on a frictionless ramp the ball cannot roll it can only slide, but on a regular ramp the ball can roll without slipping.

We will use conversation of energy.

K_A_1 + U_A_1 = K_A_2 + U_A_2\\\frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 + 0 = 0 + mgH_A

Note that initial potential energy is zero because the ball is on the bottom, and the final kinetic energy is zero because the ball reaches its maximum vertical distance and stops.

For the ball B;

K_B_1 + U_B_1 = K_B_2 + U_B_2

\frac{1}{2}I_B\omega^2 + \frac{1}{2}mv^2 + 0 = 0 + mgH_B

The initial velocities of the balls are equal. Their maximum climbing point will be proportional to their final potential energy. Since their initial kinetic energies are equal, their final potential energies must be equal as well.

Hence, both balls climb the same point.

Explanation:

4 0
3 years ago
Other questions:
  • Is the classification for an instrument that produces sound whne a string or strings stretched between two points is plucked?
    13·1 answer
  • If you are driving 72 km/h along a straight road and you look to the side for 4.0 s, how far do you travel during this inattenti
    9·1 answer
  • Two charges of 15 pC and −40 pC are inside a cube with sides that are of 0.40-m length. Determine the net electric flux through
    12·1 answer
  • You kick a soccer ball with a speed of 18 m/s at an angle of 43. How long does it take the the ball to reach the top of its traj
    5·1 answer
  • What two quantities must stay the same in order for an object to have a constant velocity? A) The speed and kinetic energy must
    15·1 answer
  • Objects A and B, of mass M and 2M respectively, are each pushed a distance d straight up an inclined plane by a force F parallel
    14·1 answer
  • Date:
    8·1 answer
  • Which vector best represents the net force acting on the +3 C charge
    5·1 answer
  • Which color lined on the graph shows the population reaching, but not surpassing, carring capacity?
    13·2 answers
  • A barometer reads 780 mm Hg. Mercury has a density of 1.36 x 10^4 kg /m^3.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!