The correct answer is 0.06857 moles.
C₆H₁₂O₆, that is, glucose has six carbons, twelve hydrogens, and six oxygen atoms. The atomic weight of C, H and O are as follows:
Six atoms of carbon = 6 × 12.01 g = 72.06 g
Twelve atoms of hydrogen = 12 × 1.008 g = 12.096 g
Six atoms of oxygen = 6 × 16.00 g = 96.00 g
So, the molar mass of C₆H₁₂O₆ is 72.06 g + 12.096 g + 96.0 g = 180.156 g.
It can also be written in the form as 180.16 g of C₆H₁₂O₆ is equal to 1 mole of C₆H₁₂O₆or 180.16 g/mole (as the molar mass)
Now, there is a need to find moles of 12.354 grams of C₆H₁₂O₆. So, the final conversion is:
12.354 g C₆H₁₂O₆ × 1 mole of C₆H₁₂O₆ / 180.16 g C₆H₁₂O₆
= 0.06857 moles
In this question, you are given the gasoline density (0.749g/ml) and volume of the gasoline (19.2 gallons). You are asked the mass of the gasoline in pounds. Then you need to change the grams into pounds and the ml into gallons. The calculation would be:
mass of gasoline= density * volume
mass of gasoline= 0.749g/ml * (1 pound/453.592grams) * 3785.41ml/gallon * 19.2 gallon= 120 pounds
When writing an ionic compound formula, a "molecular" form is used. The formula is made with allowance for ion charges.
For example,
Ca²⁺ and NO₃⁻ ⇒ Ca(NO₃)₂
Al³⁺ and SO₄²⁻ ⇒ Al₂(SO₄)₃
Basically, the answer for this would be N or NITROGEN. If we combine nitrogen with chlorine, what happens is that, it can attract more chlorine electrons towards itself. The reason is that, nitrogen is considered more electronegative compared to chlorine. So best answer for this is the first option.