Answer:
All electromagnetic radiation, regardless of its wavelength, travels at what is called the "speed of light". In a vacuum, it is measured as 299,792,458 meters per second. 3.0 x 108 meters per second.
Answer:
21000 N
Explanation:
From the question given above, the following data were obtained:
Change in momentum = 105000 kg.m/s
Time = 5s
Force =?
Force is related to momentum and time according to the following formula:
Force = Change in momentum / time
With the above formula, we can calculate the force the white car experience during the collision. This can be obtained as illustrated below:
Change in momentum = 105000 kg.m/s
Time = 5s
Force =?
Force = Change in momentum / time
Force = 105000 / 5
Force = 21000 N
Thus, the white car experience a force of 21000 N during the collision.
Answer:
Explanation:
ΔE = Δm × c^2
where,
ΔE = change in energy released with respect to change in mass
= 1.554 × 10^3 kJ
= 1.554 × 10^6 J
Δm = change in mass
c = the speed of light.
= 3 × 10^8 m/s
Equation of the reaction:
2H2 + O2 --> 2H2O
Mass change in this process, Δm = 1.554 × 10^6/(3 × 10^8)^2
= 1.727 × 10^-11 kg
The change in mass calculated from Einstein equation is small that its effect on formation of product will be negligible. Hence, law of conservation of mass holds correct for chemical reactions.
<span>When looking at nuclear masses we speak of the processes nuclear fision and nuclear fusion. </span>In fission a nucleus breaks up, into two nuclei. In fusion on the other hand two light nuclei combine to form one heavier nucleus. The relation
E=m*c^2. explains the difference in masses. <span>
So, in case of nuclear fusion t</span><span>he mass of the parts is always </span>more than the mass of the whole when looking at nuclear masses. In case of nuclear fusion. And in case of nuclear fision, the mass of the parts is always less<span> than the mass of the whole when looking at nuclear masses. In case of nuclear fusion</span>