I believe it’s stay in motion if it’s not acted on by an unbalanced force
Answer:

Explanation:
= Force on one side of the door by first waiter = 257 N
= Force on other side of the door by second waiter
= distance of first force by first waiter from hinge = 0.567 m
= distance of second force by second waiter from hinge = 0.529 m
Since the door does not move. hence the door is in equilibrium
Using equilibrium of torque by force applied by each waiter

The first law states that “objects at rest and objects in motion remain in motion in a straight line unless acted upon by an unbalanced force”. Keeping the ice smooth will make sure there is not friction, friction would slow the puck down
Answer:
Option (2)
Explanation:
From the figure attached,
Horizontal component, 
![A_x=12[\text{Sin}(37)]](https://tex.z-dn.net/?f=A_x%3D12%5B%5Ctext%7BSin%7D%2837%29%5D)
= 7.22 m
Vertical component, ![A_y=A[\text{Cos}(37)]](https://tex.z-dn.net/?f=A_y%3DA%5B%5Ctext%7BCos%7D%2837%29%5D)
= 9.58 m
Similarly, Horizontal component of vector C,
= C[Cos(60)]
= 6[Cos(60)]
= 
= 3 m
![C_y=6[\text{Sin}(60)]](https://tex.z-dn.net/?f=C_y%3D6%5B%5Ctext%7BSin%7D%2860%29%5D)
= 5.20 m
Resultant Horizontal component of the vectors A + C,
m
= 4.38 m
Now magnitude of the resultant will be,
From ΔOBC,

= 
= 
= 6.1 m
Direction of the resultant will be towards vector A.
tan(∠COB) = 
= 
= 
m∠COB = 
= 46°
Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.
Option (2) will be the answer.