Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Answer:
The lenses with different focal length are four.
Explanation:
Given that,
Radius of curvature R₁= 4
Radius of curvature R₂ = 8
We know ,
Refractive index of glass = 1.6
When, R₁= 4, R₂ = 8
We need to calculate the focal length of the lens
Using formula of focal length

Put the value into the formula



When , R₁= -4, R₂ = 8
Put the value into the formula



When , R₁= 4, R₂ = -8
Put the value into the formula



When , R₁= -4, R₂ = -8
Put the value into the formula



Hence, The lenses with different focal length are four.
Answer:
0.037 A
Explanation:
Magnetic field = B = 1.00 e-4 T
Length = L = 0.380 m
Number of turns = 810
B = μ₀ N I / L
⇒ Current = I = B L / μ₀ N = ( 1 e-4) ( 0.380) / (4π × 10⁻⁷)(810)
= 0.037 A = 37.3 mA
Part a)
per day electricity power consumed when 100 W bulb is used for 8 hours

for one year consumption

now the cost will be given

now when other energy efficient light is used

for one year consumption

now the cost will be given
