Answer:
(a) 2.33 A
(b) 15.075 V
Explanation:
From the question,
The total resistance (Rt) = R1+R2 = 3.85+6.47
R(t) = 10.32 ohms.
Applying ohm's law,
V = IR(t)..........equation 1
Where V = Emf of the battery, I = current flowing through the circuit, R(t) = combined resistance of both resistors.
Note: Since both resistors are connected in series, the current flowing through them is the same.
Therefore,
I = V/R(t)............. Equation 2
Given: V = 24 V, R(t) = 10.32 ohms
Substitute these values into equation 2
I = 24/10.32
I = 2.33 A.
Hence the current through R1 = 2.33 A.
V2 = IR2.............. Equation 3
V2 = 2.33(6.47)
V2 = 15.075 V
Answer: B. The gravitational field strength of Planet X is Wx/m.
Explanation:
Weight is a force, and as we know by the second Newton's law:
F = m*a
Force equals mass times acceleration.
Then if the weight is:
Wx, and the mass is m, we have the equation:
Wx = m*a
Where in this case, a is the gravitational field strength.
Then, isolating a in that equation we get:
Wx/m = a
Then the correct option is:
B. The gravitational field strength of Planet X is Wx/m.
<span>.Ask a Question
.Do Background Research.
.Construct a Hypothesis.
.Test Your Hypothesis by Doing an Experiment
.Analyze Your Data and Draw a Conclusion.
<span>.Communicate Your Results.</span></span>
Answer:
c. 40200 J
Explanation:
Assume gravitational constant g = 9.8m/s2. The weight of the 2000kg vehicle is

In addition to the friction averaging at 500N, the total force is
F = 20000 + 500 = 20100 N
The work required to generate this force over a distance of 2m would be
F*s = 20500 * 2 = 40200 J
So c.40200 J is the correct answer