<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.
Using the kinematic equation d = V_0 * t + 1/2 * a * t^2, where d is height you can rewrite this to be d = 1/2*g*t^2 or 4.9t^2
g = a because this is a free fall
d = 1/2 * 9.81m/s^2 * 2.5^2
d = 30.65625m
d = 30.7m
-- As she lands on the air mattress, her momentum is (m v)
Momentum = (60 kg) (5 m/s down) = 300 kg-m/s down
-- As she leaves it after the bounce,
Momentum = (60 kg) (1 m/s up) = 60 kg-m/s up
-- The impulse (change in momentum) is
Change = (60 kg-m/s up) - (300 kg-m/s down)
Magnitude of the change = <em>360 km-m/s </em>
The direction of the change is <em>up /\ </em>.
Ox:vₓ=v₀
x=v₀t
Oy:y=h-gt²/2
|vy|=gt
tgα=|vy|/vₓ=gt/v₀=>t=v₀tgα/g
y=0=>h=gt²/2=v₀²tg²α/2g=>tgα=√(2gh/v₀²)=√(2*10*20/24²)=√(400/576)=0.83=>α=tg⁻¹0.83=39°
cosα=vₓ/v=v₀/v=>v=v₀/cosα=24/cos39°=24/0,77=31.16 m/s
Ec=mv²/2=2*31.16²/2=971.47 J=>Ec≈0.97 kJ