The velocity of an electron that has been accelerated through a difference of potential of 100 volts will be 5.93 *
m/s
Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Voltage is the amount of push or pressure that is being applied to the electrons.
By conservation of energy, the kinetic energy has to equal the change in potential energy, so KE=q*V. The energy of the electron in electron-volts is numerically the same as the voltage between the plates.
given
charge of electron = 1.6 ×
C
mass of electron = 9.1 ×
kg
Force in an electric field = q*E
potential energy is stored in the form of work done
potential energy = work done = Force * displacement
= q * (E * d)
= q * (V) = 1.6 ×
* 100
stored potential energy = kinetic energy in electric field
kinetic energy = 1/2 * m * 
= 1/2 * 9.1 ×
* 
equation both the equations
1/2 * 9.1 ×
*
= 1.6 ×
= 0.352 *
m/s
= 35.2 * 
= 5.93 *
m/s
To learn more about kinetic energy in electric field here
brainly.com/question/8666051
#SPJ4
Static electricity. Like the balloon against hair
consider the velocity of the ball towards the wall as negative and away from the wall as positive.
m = mass of the ball = 513 g = 0.513 kg
v₀ = initial velocity of the ball towards the wall before collision = - 14.7 m/s
v = final velocity of the ball away from the wall after collision = 11.3 m/s
t = time of contact with the wall = 0.038 sec
F = average force acting on the ball
using impulse-change in momentum equation , average force is given as
F = m (v - v₀)/t
inserting the values
F = (0.513) (11.3 - (- 14.7))/0.038
F = 351 N
Answer:
m' = 1 x 10⁻⁶ kg/s
Explanation:
Given that
Diffussion constant = 1 x 10⁻¹¹
Mass flow rate ,m = 2 x 10⁻⁶ kg/s
The diffusion is inversely proportional to the thickness of the membrane and therefore when the thickness is doubled, the mass flow rate would become half.
So new flow rate m'


m' = 1 x 10⁻⁶ kg/s
Answer:
t = 1.62 h
Explanation:
A flat mirror fulfills the law of reflection where the incident angle is equal to the reflected angle.
θ_i = θ_r
If we use trigonometry to find the angles, the mirror is at a height of L = 1.87 m, and the reflected rays reach a distance x1 = 3.56 m
tan θ₁ = x₁ / L
tan θ₁ = 
θ₁ = tan⁻¹ 1.90
θ₁ = 62.29º
for the second case x₂ = 1.46 m
tan θ₂ = x₂ / L
θ₂ = tan⁻¹ 
θ₂ = 37.98º
the difference in degree traveled is
Δθ = θ₁- θ₂
Δθ = 62.29 - 37.98
Δθ = 24.31º
as in the exercise they indicate that every 15º there is an hour
t = 24.31º (1h / 15º)
t = 1.62 h