Answer: The mole ratio of hydrogen to nitrogen is 3 mole: 1 mole, 3:1
Explanation:
•Mole ratios are determined using the coefficients of the substances in the balanced chemical equation. •Each coefficient represents the number of mole of each substance in the chemical reaction.
•The mole ratio can be determined by first writing out a balanced chemical equation for the reaction.
For this reaction the balanced chemical equation is
N2(g) + 3H2(g) ----> 2NH3(g)
1mol:3mol : 2mol
From the equation we can see that 1 mole of N2(g) reacts with 3 moles of H2(g) or 3 moles of H2(g) react with 1 mole of N2(g) to produce 2 moles of NH3(g).
Therefore, the mole ratio of hydrogen to nitrogen is 3 mole: 1 mole, 3:1
Answer:
Gas is sometimes measured in cubic feet at a temperature of 60 degrees Fahrenheit and an atmospheric pressure of 14.7 pounds per square inch. Gas production from wells is discussed in terms of thousands or millions of cubic feet (Mcf and MMcf). Resources and reserves are calculated in trillions of cubic feet (Tcf).
Answer:
ok.. what is your question??? confused
Answer:
w = 164.62 g
Explanation:
molarity of a solution is given as -
Molarity (M) = ( w / m ) / V ( in L)
where ,
m = molecular mass ,
w = given mass ,
V = volume of solution ,
From the question ,
M = 500 mM = 0.5 M
( since , 1 mM = 1 / 100 M)
As we know , the molecular mass of potassium ferricyanide = 329.24 g/ mol
V = vol.of solution = 1 L
w = ?
<u>To find the value of w , using the above formula , and putting the respected values , </u>
Molarity (M) = ( w / m ) / V ( in L)
0.5 = ( w / 329.24 ) / 1 L
w = 164.62 g