made from pure metals . . . no;
they've been made from all kinds of weird compounds and alloys.
conduct electricity with zero resistance . . . yes;
that's why they're called "superconductors".
produce a strong magnetic field . . . possible, but not because it's a superconductor;
just like any other conductor, the magnetic field depends on the current that's flowing in the conductor.
no loss of energy in the transfer of electricity . . .
there's no loss of energy in the current flowing in the superconductor;
but if you tried to transfer the current out of the superconductor into
something else, then there would be some loss.
The last one, the soil will become weak & unable to support plant growth
Viscosity of liquids is essentially the 'thickness' of the liquid. For instance, honey and water have different viscosities. Honey has a higher one and therefore, liquids with high viscosity do not flow as well as liquids with low viscosity (water).
Answer:
a.) a = 0 ms⁻²
b.) a = 9.58 ms⁻²
c.) a = 7.67 ms⁻²
Explanation:
a.)
Acceleration (a) is defined as the time rate of change of velocity
Given data
Final velocity = v₂ = 0 m/s
Initial velocity = v ₁ = 0 m/s
As the space shuttle remain at rest for the first 2 minutes i.e there is no change in velocity so,
a = 0 ms⁻²
b.)
Given data
As the space shuttle start from rest, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 8 min = 480 s
By the definition of Acceleration (a)

a = 9.58 ms⁻²
c.)
Given data
As the space shuttle is at rest for first 2 min then start moving, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 10 min = 600 s
By the definition of Acceleration (a)

a = 7.67 ms⁻²
Answer:
4 A
Explanation:
The relationship between current, voltage and resistance in a circuit is given by Ohm's law:

where
V is the voltage
R is the resistance
I is the current
The equation can also be rewritten as

from which we see that the current is inversely proportional to the resistance, R.
In this problem, the initial current is I = 8 A. Then the resistance is doubled:
R ' = 2R
So the new current is

so the current is halved.