Answer:
2.17 Mpa
Explanation:
The location of neutral axis from the top will be

Moment of inertia from neutral axis will be given by 
Therefore, moment of inertia will be
![\frac {240\times 25^{3}}{12}+(240\times 25)\times (56.25-25/2)^{2}+2\times [\frac {20\times 150^{3}}{12}+(20\times 150)\times ((25+150/2)-56.25)^{2}]=34.5313\times 10^{6} mm^{4}}](https://tex.z-dn.net/?f=%5Cfrac%20%7B240%5Ctimes%2025%5E%7B3%7D%7D%7B12%7D%2B%28240%5Ctimes%2025%29%5Ctimes%20%2856.25-25%2F2%29%5E%7B2%7D%2B2%5Ctimes%20%5B%5Cfrac%20%7B20%5Ctimes%20150%5E%7B3%7D%7D%7B12%7D%2B%2820%5Ctimes%20150%29%5Ctimes%20%28%2825%2B150%2F2%29-56.25%29%5E%7B2%7D%5D%3D34.5313%5Ctimes%2010%5E%7B6%7D%20mm%5E%7B4%7D%7D)
Bending stress at top= 
Bending stress at bottom=
Mpa
Comparing the two stresses, the maximum stress occurs at the bottom and is 2.17 Mpa
Answer:
No,
Explanation:
An electromagnetic wave is made of vibrating electric and magnetic fields that continually induce each other; matter is not needed for this to occur.
Our data are,
State 1:

State 2:

We know as well that 
To find the mass we apply the ideal gas formula, which is given by

Re-arrange for m,

Because of the pressure, temperature and volume ratio of state 1 and 2, we have to

Replacing,

For conservative energy we have, (Cv = 0.718)

Period = 6 seconds and
.
<u>Explanation:</u>
We have , the motion of a swing that requires 6 seconds to complete one cycle. Period is the amount of time needed to complete one oscillation . And in question it's given that 6 seconds is needed to complete one cycle. Hence ,Period of the motion of a swing is 6 seconds . Frequency is the number of vibrations produced per second and is calculated with the formula of
. SI unit of frequency is Hertz or Hz. We know that time period is 6 seconds so frequency =
⇒ 
⇒ 
⇒ 
Therefore , Period = 6 seconds and
.
Answer:
the wavelength is 9.8 meters
Explanation:
We can use the relationship:
Velocity = wavelenght*frequency.
Initially we have:
wavelenght = 4.9m
velocity = 9.8m/s
then:
9.8m/s = 4.9m*f
f = 9.8m/s/4.9m = 2*1/s
now, if the velocity is doubled and the frequency remains the same, we have:
2*9.8m/s = wavelenght*2*1/s
wavelenght = (2*9.8m/s)*(1/2)s = 9.8 m