I think it would be false hope this helps
The amount of water that must be added to 6.0 M silver nitrate to make 500mL of 1.2 M solution is : 2000 mL
<u>Given data :</u>
Concentration of siilver nitrate ( M₁ ) = 6.0 M
volume of solution ( V₁ ) = 500 mL
Conc of solution ( M₂ )= 1.2 M
<h3>Determine the amount of water that must be added</h3>
we will apply the equation below
M₁V₁ = M₂V₂ ---- ( 1 )
where : V₂ = V₁ + water added ---- ( 2 )
V₂ ( Final volume ) = ( M₁V₁ ) / M₂
= ( 6 * 500 ) / 1.2
= 2500 mL
Back to eqaution ( 2 )
2500 mL = 500 mL + added water
therefore ; added water = 2500 - 500
= 2000 mL
Hence we can conclude that The amount of water that must be added to 6.0 M silver nitrate to make 500mL of 1.2 M solution is : 2000 mL.
Learn more about Volume : brainly.com/question/12410983
#SPJ1
Temperature and salinity changes the density of water.
<h3>Effect of Temperature and salinity on water</h3>
Temperature and salinity directly affect density of water. Water that low temperature is more denser than water that has high temperature while on the other hand, Freshwater which has no salt is less denser than seawater which has more salt concentration so we can conclude that temperature and salinity changes the density of water.
Learn more about salinity here: brainly.com/question/20283396
Answer:
Similar propoties is the answer
Answer:
The answer to your question is: letter A.
Explanation:
A Covalent bond polar is between 2 non metals where one atom is bigger than the other one so the distribution of charges creates this polarity.
A. One atom attracts shared electrons more strongly than the other atom This is the correct definition of bond polar, one element is bigger and stronger than the other element.
B. One atom has transferred its electrons completely to another atom This definition is incorrect, it is the definition of ionic bonding.
C. A sea of electrons has been created between the elements This definition is incorrect for the polar bond, it describes a metallic bonding.
D. Two atoms are sharing electrons with equal attraction This definition is incorrect for a polar bond, but is the correct definition for nonpolar bonding.