Answer:
C
Explanation:
electronic waves transmits energy but mechanical waves require a medium in order to transport their energy from bgg one place to another.
Answer:
gravity equation.
Explanation:
use this gravity equation
F= G(m1*m2/d²)
Answer:
441.28 g Oxygen
Explanation:
- The combustion of hydrogen gives water as the product.
- The equation for the reaction is;
2H₂(g) + O₂(g) → 2H₂O(l)
Mass of hydrogen = 55.6 g
Number of moles of hydrogen
Moles = Mass/Molar mass
= 55.6 g ÷ 2.016 g/mol
= 27.8 moles
The mole ratio of Hydrogen to Oxygen is 2:1
Therefore;
Number of moles of oxygen = 27.5794 moles ÷ 2
= 13.790 moles
Mass of oxygen gas will therefore be;
Mass = Number of moles × Molar mass
Molar mass of oxygen gas is 32 g/mol
Mass = 13.790 moles × 32 g/mol
<h3> = 441.28 g</h3><h3>Alternatively:</h3>
Mass of hydrogen + mass of oxygen = Mass of water
Therefore;
Mass of oxygen = Mass of water - mass of hydrogen
= 497 g - 55.6 g
<h3> = 441.4 g </h3>
Answer:
The calcium concentration must be greater outside the cell than inside the cell.
Explanation:
My previous answer was deleted from the explanation I provided from another website.
Answer:
The coordination sphere of a complex consists of <u><em>the central metal ion and the ligands bonded to it.</em></u>
Explanation:
The Coordination Compounds are sets of a central metal ion attached to a group of molecules or ions that surround it. They are also called metal complexes or simply complexes. Then they are compounds that have a central atom surrounded by a group of molecules or ions, the latter called ligands.
The central atom must have empty orbitals capable of accepting pairs of electrons, with the transition metals being the ones with the greatest tendency. Because of this, they can act as Lewis acids (electron pair acceptors). The ligands have unshared electron pairs, then acting as Lewis bases (electron pair donors).
When forming a complex, it is said that the ligands coordinate to the metal and the central metal and the ligands attached to it constitute the coordination sphere of the complex.
Finally, <u><em>the coordination sphere of a complex consists of the central metal ion and the ligands bonded to it.</em></u>