Answer:
c
Explanation:
5.3" (and any subsequent words) was ignored because we limit queries to 32 words.
Answer:
T/√8
Explanation:
From Kepler's law, T² ∝ R³ where T = period of planet and R = radius of planet.
For planet A, period = T and radius = 2R.
For planet B, period = T' and radius = R.
So, T²/R³ = k
So, T²/(2R)³ = T'²/R³
T'² = T²R³/(2R)³
T'² = T²/8
T' = T/√8
So, the number of hours it takes Planet B to complete one revolution around the star is T/√8
Answer:
First answer to the first question is Two people pulling a rope with the same force in a opposite direction. The other one would be 2.72N
Explanation:
Hope this helps you :)
The speed of the ball is 101miles/hr.
A mile is a unit of length that is exactly 1,609.344 metres long. Similarly, 5,280 feet or 1,760 yards make up one mile. The mile is an imperial and common US measurement of distance.
We just have to deal with unit conversions.
One mile is 5280 feet, or 1 ft = 0.000189
The speed of the ball in miles per hour is

So, the speed of the ball in miles per hour is 101miles/hr.
Learn more about miles here;
brainly.com/question/23245414
#SPJ4