Answer:
Newton's second law of motion states that the acceleration of a system is directly proportional to and in the same direction as the net external force acting on the system, and inversely proportional to its mass. In equation form, Newton's second law of motion is a=Fnetm a = F net m .
Explanation:
The rocket engine works on the basic principle proposed by Newton which is Newton’s Third Law.
Steps 1 and 2)
The variables are W = work, P = power, and t = time. In this case, W = 9514 joules and P = 347 watts.
The goal is to solve for the unknown time t.
-----------------------
Step 3)
Since we want to solve for the time, and we have known W and P values, we use the equation t = W/P
-----------------------
Step 4)
t = W/P
t = 9514/347
t = 27.4178674351586
t = 27.4 seconds
-----------------------
Step 5)
The lawn mower ran for about 27.4 seconds. I rounded to three sig figs because this was the lower amount of sig figs when comparing 9514 and 347.
-----------------------
Note: we don't use the mass at all
Answer:
Its initial position was 471 m.
Explanation:
We have,
Final position of the object is 327 m
Displacement of the object is -144 m
It is required to find its initial position. The difference of final and initial position is equal to the displacement of the object. So,

So, its initial position was 471 m.
Answer:
The smallest integer is n = 4
Explanation:
Using the equation V= Sqrt(F/Linear density)
V= Sqrt(341/0.0120)
V= Sqrt(28416.7)
V= 168.57m/s
Path distance =[ (n +1)/2]lambda
But V= f(Lambda)
n lambda/2 =L
n = f2L/V
n = (20 × 2 × 16.86) / 168.57
n = 4.0007
The smallest integer is n= 4