Answer : The value of equilibrium constant for this reaction at 328.0 K is
Explanation :
As we know that,
where,
= standard Gibbs free energy = ?
= standard enthalpy = 151.2 kJ = 151200 J
= standard entropy = 169.4 J/K
T = temperature of reaction = 328.0 K
Now put all the given values in the above formula, we get:
The relation between the equilibrium constant and standard Gibbs free energy is:
where,
= standard Gibbs free energy = 95636.8 J
R = gas constant = 8.314 J/K.mol
T = temperature = 328.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:
Therefore, the value of equilibrium constant for this reaction at 328.0 K is
Answer:
Frequency, f = 0.6 Hz
Explanation:
We have,
Number of waves passing through a point are 3
Time for which the waves are passing is 5 seconds
It is required to find the frequency of a wave. The frequency of a wave is defined as the no of waves per unit time. So,
So, the frequency of a wave is 0.6 Hz.
Answer:
Homogeneous
Explanation:
Homogeneous mixtures are uniform in composition. They have the same proportion of components throughout. Homogeneous mixtures are called solutions. Sugar, paint, alcohol, gold are all examples of homogeneous mixtures because they look the same throughout.
Explanation:
Reaction equation for the given chemical reaction is as follows.
Equation for reaction quotient is as follows.
Q =
=
= 0.256
As, Q > K (= 0.12)
The effect on the partial pressure of as equilibrium is achieved by using Q, is as follows.
- This means that there are too much products.
- Equilibrium will shift to the left towards reactants.
- More is formed.
- Partial pressure of increases.