Answer:
3. Large butterfly in flight, flying through the air?
Explanation:
Momentum is simply defined as the quantity of motion a body possess. It is mathematically given as;
Momentum = mass x velocity
The larger the mass, the larger the momentum and also the velocity
Since the large butterfly is in flight, it has the largest velocity.
A sleeping bear and resting caterpillar have no momentum because their velocity is 0
She could tell by how many components she put in. The compounds, are like the ingredients. The Mixture is all the ingredients stirred together.
Water freezes at the freezing point to ice then melts to the melting turning it to liquid and vapor causing gas in precipitation
Answer:
351 ohm
720 ohm
Explanation:
When c and d are open:
Terminals c and d are open.. If you redraw the circuit as below, you can see that the two resistors in the first column are in parallel as, they are connected together at both pairs of terminals (due to the short).
Hence, we have a pair of parallel resistors:
Req1 = (R1*R2)/ (R1 + R2) = 360*540/(360+540) = 216 ohms
Req2 = (R3*R4)/ (R3 + R4) = 180*540/(180+540) = 135 ohms
Now these two sets are in series with another Hence,
Req = Req1 + Req2 = 216 + 135 = 351 ohms
Answer: 351 ohms
When c and d are shorted:
The current will flow through the least resistant path naturally from resistors R3 and R1 or R4.
Both of these resistor lie in a single path placing the resistors in series to one another, hence
Req = R3 + R1 = 180 + 540 = 720 ohms
Answer:720 ohms
Answer:
The magnitude of the tension on the ends of the clothesline is 41.85 N.
Explanation:
Given that,
Poles = 2
Distance = 16 m
Mass = 3 kg
Sags distance = 3 m
We need to calculate the angle made with vertical by mass
Using formula of angle



We need to calculate the magnitude of the tension on the ends of the clothesline
Using formula of tension

Put the value into the formula


Hence, The magnitude of the tension on the ends of the clothesline is 41.85 N.