Answer:
K= 95.4 J
Explanation:
For this exercise we must use the conservation of mechanical energy.
We set a reference system on the floor.
Starting point. Higher
Em₀ = U = m g h
Final point. Just before taking the floor
Em_f = K = ½ m v²
energy is conserved because there is no friction
Em₀ = Em_f
mg h = K
The height is
- h = y -y₀
h = 0- y₀
let's calculate
K = 3.23 (-9.81) (-3.01)
K= 95.4 J
<span>A coil is used to step up the electric potential difference using the principle of induction.</span>
Answer:
Weather situations can be prepared for in many cases,
Explanation:
Wind and Waves are the 2 main forms of erosion on coastline cliffs
Answer:
a) 0 J
b) W = nRTln(Vf/Vi)
c) ΔQ = nRTln(Vf/Vi)
d) ΔQ = W
Explanation:
a) To find the change in the internal energy you use the 1st law of thermodynamics:

Q: heat transfer
W: work done by the gas
The gas is compressed isothermally, then, there is no change in the internal energy and you have
ΔU = 0 J
b) The work is done by the gas, not over the gas.
The work is given by the following formula:

n: moles
R: ideal gas constant
T: constant temperature
Vf: final volume
Vi: initial volume
Vf < Vi, then W < 0 and the work is done on the gas
c) The gas has been compressed. Thus, its temperature increases and heat has been transferred to the gas.
The amount of heat is equal to the work done W
d)
