1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
just olya [345]
3 years ago
10

What is the solution to the system of linear equations graphed below? Plz help

Mathematics
1 answer:
Tema [17]3 years ago
3 0

Answer:

y=-2x+3

Step-by-step explanation:

the points of intersect are (0,3) and (2,-1) then i made it into slope

3+1/0-2

4/-2

-2

substitute (0,3)

3=b

y=-2x+3

You might be interested in
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
How do you solve this
Orlov [11]
A) since the ratio of green peppers to pureed tomatoes is 1:4, the tomatoes have 4 times the amount of mL as the peppers, so there are 20mL of green peppers he should mix with 80 mL of pureed tomatoes.


8 0
3 years ago
The difference of two numbers is 192, the sum is 3782
LenaWriter [7]

(3782 - 192) : 2 = 1795 (first number)

1795 + 192 = 1987 ( second number)

--------------------------

1987 - 1795 = 192

1987 + 1795 = 3782

4 0
4 years ago
Over which interval is the graph of f(x) = one-halfx2 + 5x + 6 increasing?
kaheart [24]

Answer:

\large\boxed{x\in[-5,\ \infty)}

Step-by-step explanation:

f(x)=\dfrac{1}{2}x^2+5x+6\\\\\text{The coeficient of}\ x^2\ \text{is the positive number. Therefore the parabola is op}\text{en up}.\\\\\text{If a parabola op}\text{en up, then the graph increasing in interval}\ (h,\ \infty),\\\text{and decreasing in interval}\ (-\infty,\ h).\ \text{Where}\ h\ \text{is a first coordinate of a vertex.}\\\\\text{For}\ y=ax^2+bx+c,\ h=\dfrac{-b}{2a}.\\\\\text{We have}\ a=\dfrac{1}{2}\ \text{and}\ b=5.\ \text{Substitute:}\\\\h=\dfrac{-5}{2\left(\frac{1}{2}\right)}=-\cdot\dfrac{5}{1}=-5.

8 0
3 years ago
Read 2 more answers
A boat is heading towards a lighthouse, whose beacon-light is 139 feet above the
Novay_Z [31]

The horizontal distance between light house and boat is 1588.78 feet approximately.

The figure is given by,

Here, AB  = height of the lighthouse bacon light above the water = 139 feet

Now angle ACB = 5 degree

Let the horizontal distance of light house from the boat = BC = x feet

So by trigonometric function we get,

tan 5 = AB/BC

tan 5 = 139/x

x = 139/tan 5 = 1588.78 (approximately)

Hence the horizontal distance between light house and boat is 1588.78 feet approximately.  

To know more about Trigonometric Function refer to:

brainly.com/question/1143565

#SPJ9

5 0
1 year ago
Other questions:
  • What 2 numbers can go into 33 equally?
    9·2 answers
  • What is the value of w in the following formula when L=26 cm and p=80cm?<br> P=2l+2w
    6·1 answer
  • If g(x) = 2x - 5 and h(x) = 3x + 7, then g(h(x)) = ?
    14·1 answer
  • Jamil finished 5-6 of his homework.Margaret finished 3-4 of her homework,and Steve finished 10-12 of his homework.which two stud
    6·2 answers
  • Alyssa flips a fair,two-sided coin four times.What is the probability that the coin lands with heads facing up exactly three tim
    14·1 answer
  • EASY BRAINLIEST PLEASE HELP!!
    10·2 answers
  • What is the area of the object above? A. 90 sq cm B. 104 sq cm C. 140 sq cm D. 98 sq cm
    10·1 answer
  • Jack Frost is looking at internet service plans. A local company offers a one-month plan for $39.95 or a two-month plan for $68.
    8·1 answer
  • Copy and complete the statement using or =
    12·1 answer
  • Give the equation of the line in slope intercept form y=x+ ?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!