1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
azamat
3 years ago
8

How many electrons are in the third energy level of a calcium atom

Physics
2 answers:
pochemuha3 years ago
6 0

Answer:

there are 8 electrons

Explanation:

Calcium is a transition element present in the D block of the periodic table. Calcium has atomic number 20. So its electronic configuration is 2, 8, 8, 2  by the Afbau rule. 2, 8,8 and 2 electrons are present in K,L, M and N shells of the atom. So, we can say that the number of electrons in the third energy level of  a calcium atom are 8.  

lidiya [134]3 years ago
4 0
There are 8 electrons in the third energy level of Calcium atom.  
You might be interested in
On a cold winter day, the flow of heat is from the outside in. A.True B.False
fredd [130]
Your answer s obviously false
8 0
3 years ago
Read 2 more answers
A kangaroo can jump over an object 2.46 m high. (a) Calculate its vertical speed (in m/s) when it leaves the ground.
Elenna [48]

Answer:

a) 6.95 m/s

b) 1.42 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 9.81 m/s²

v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow -u^2=2\times -9.81\times 2.46-0^2\\\Rightarrow u=\sqrt{2\times 9.81\times 2.46}\\\Rightarrow u=6.95\ m/s

a) The vertical speed when it leaves the ground. is 6.95 m/s

v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{0-6.95}{-9.81}\\\Rightarrow t=0.71\ s

Time taken to reach the maximum height is 0.71 seconds

s=ut+\frac{1}{2}at^2\\\Rightarrow 2.46=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{2.46\times 2}{9.81}}\\\Rightarrow t=0.71\ s

Time taken to reach the ground from the maximum height is 0.71 seconds

b) Time it stayed in the air is 0.71+0.71 = 1.42 seconds

3 0
3 years ago
How to find i1, i2,i3
MrRissso [65]

to find i1, i2, and i3 we need to find the total current.

to find the total current, you need to find the total resistance

you're already given the total voltage, Vs

to find Rtotal, start from the resistors furthest from the voltage source.

R3 and R4 are in series so

Rtotal= R3+R4 = 6+3 = 9 ohms

9 ohms is now in parallel with R2 so,

Rtotal= (\frac{1}{R3+R4}) ^{-1}\\ + (\frac{1}{R2}) ^{-1})^-1= (1/18)^-1 +( 1/9)^-1 = 6 ohms

6 ohms is in series with R1 so

Rtotal=  4+6=10 ohms

itotal= (\frac{Vtotal}{Rtotal})

= 120 v/10 ohms = 12 A

i total = i1 because all the current flows through it

i1= 12A

so the current splits into i2 and i3 and the amount of current that flows through a branch depends on the total resistance in each branch.

we already calculated the resistance in the R3+R4 & R2 branch as 6 ohms

since r3 and r4 are in series, the same current will flow through them

r3+r4 = 9 ohms

r2= 18 ohms

so the current in r2 will be half that of R3 & R4 (V=IR)

using the current divider rule

Ix = Itotal * \frac{Rtotal}{Rx}

i2= 12A x (6 ohms/18 ohms)= 4 A

i3= 12A x (6 ohms/9 ohms) = 8 ohms

6 0
3 years ago
Can someone please help me with this physics question? I'm desperate!
Lelu [443]

Answer:

a) 2·√10 seconds

b) Linda should be approximately 30.6 meters

c) Jenny's speed at the 100-m mark is approximately 6.325 m/s

Explanation:

The speed with which Linda is running = 8.6 m/s

The point Jenny starts = The 80-m mark

The acceleration of Jenny = 1.0 m/s²

a) The time it takes Jenny to run from the 80-m mark to the 100-m mark, <em>t</em>, is given as follows

Δs = u·t + (1/2)·a·t²

Δs = Distance = 100-m - 80-m = 20-m

u = The initial velocity of Jenny = 0

a = Jenny's acceleration = 1.0 m/s²

∴ 20 = 0×t + (1/2) × 1 × t² = t²/2

20 = t²/2

t = √(20 × 2) = 2·√10

The time it takes Jenny to run from the 80-m mark to the 100-m mark = 2·√10 seconds

b) The distance Linda runs in t = 2·√10 seconds, d = v × t

Given that Linda's velocity, v = 8.6 m/s, we have;

d = 8.0 × 2·√10 = 16·√10

The distance Linda runs in t = 2·√10 seconds = 16·√10 meters ≈ 50.6 meters

Therefore, Linda should be approximately (50.6 - 20) meters = 30.6 meters behind Jenny when Jenny starts running

c) Jenny's speed at the 100 m mark is given as follows;

v = u + a·t

t = 2·√10 seconds, a = 1.0 m/s², u = 0

∴ v = 0×t + 1.0×2·√10 = 2·√10 ≈ 6.325

Jenny's speed at the 100-m mark ≈ 6.325 m/s

3 0
3 years ago
When flying in an airplane, you are most likely in which layer of the atmosphere? mesosphere thermosphere stratosphere trosphere
Sergeeva-Olga [200]
Lower stratosphere, this is to avoid turbulence
6 0
3 years ago
Read 2 more answers
Other questions:
  • One gram of salt in 100 liters of water could be considered a _______________________ solution.
    15·2 answers
  • The prismatic bar has a cross-sectional area
    13·1 answer
  • Which of the following best defines boiling point?
    9·1 answer
  • The earth has a magnetic field much like a bar magnet. Explain this statement. what does a bar magnet look like? what does its f
    11·2 answers
  • A motorcycle rides on the vertical walls around the perimeter of a large circular room. The friction coefficient between the mot
    6·1 answer
  • Potential energy question
    13·1 answer
  • Kinetic energy can be calculated using the formula KE = 1/2mv2. What is the kinetic energy of a bicycle that has a mass of 20 kg
    9·1 answer
  • Which of the following statements is NOT correct?
    14·1 answer
  • 2 t of ferrous scrap at a temperature of 20 degrees is heated to the melting point and melted. How much to consume?
    14·1 answer
  • 3. What does the difference in force depend on?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!