Ca(NO3)2(aq) + Na2CO3(aq) → 2NaNO3 + CaCO3⬇. NaNO3 is solution so CaCO3 is the precipitate formed.
This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
<span> U = (1/2)kx^2
</span><span> U = (1/2)(5.3)(3.62-2.60)^2
</span> U = <span>
<span>2.75706 </span></span>J
Answer: (1) The correct answer is A.
(2) The correct answer is D.
Explanation:
(1)
Reflection is the sending back of light from the surface without absorbing it. In the reflection phenomenon, the wave does not continue moving forward.
Diffraction is the bending of the light around the obstacle. In the diffraction phenomenon, the wave travels forward after striking around the obstacle.
Therefore, the correct answer is A.
(2)
Amplitude is the maximum displacement in the medium from the rest position.
The amount of energy is related to the amplitude. Amplitude is related to the amount of energy carried by the wave. Low energy wave is characterized by a low amplitude. High energy wave is characterized by a high amplitude.
Therefore, the correct option is D.
Answer is E
time can be negative.
A is not true because <span>a=<span><span><span>d2</span>x</span><span>d<span>t2</span></span></span>=12 m/<span>s2</span></span>
C: question already said that particle move along x-axis, which is not parabola path.
D: velocity is <span><span><span>dx</span><span>dt</span></span>=12t</span>, therefore velocity changes by 12 m/s and not 9.8 m/s
So we are left with E.
<span>
</span>
Answer:
Mass of natural gas needed to heat the room is 350,000BTUs
Explanation:
The heating efficiency of a furnace is never 100% because not all energy is released and not all heat is available to heat the place. A lesser efficiency requires more consumption of fuel. Heating values are used for heating fuels in order to calculate the mass of fuel needed.
The heating value of natural gas is 1,000,000BTUs
Therefore the formular for calculating mass of natural gas needed= Heating value of natural gas×efficiency.
Mass=1,000,000×0.35
Mass=350,000BTUs