Answer:
T = 712.9 N
Explanation:
First, we will find the speed of the wave:
v = fλ
where,
v = speed of the wave = ?
f = frequency = 890 Hz
λ = wavelength = 0.1 m
Therefore,
v = (890 Hz)(0.1 m)
v = 89 m/s
Now, we will find the linear mass density of the wire:

where,
μ = linear mass density of wie = ?
m = mass of wire = 90 g = 0.09 kg
L = length of wire = 1 m
Therefore,

μ = 0.09 kg/m
Now, the tension in wire (T) will be:
T = μv² = (0.09 kg/m)(89 m/s)²
<u>T = 712.9 N</u>
Answer:
if you're converting then the answer is 0.00895
Explanation:
895 centimetres converted into kilometres= 0.00895
Answer:
Option B) This minimizes the harmful side effects of the radiations
Explanation:
Half-life is the time taken for the decay of an radio-active atom in which it disintegrates such that it becomes half of its value at the beginning.... The nuclei should be in active mode for a longer duration sufficient for the treatment of the condition but these nuclei should have a sufficient shorter half life so that they don't get enough time to cause any damage to the health of the person other than treating the cause.
A shorter half life gives the assurance that the radiation after the treatment will leave the body without getting accumulated and cause harm to the body cells and other organs.
<h2>5.3 km</h2>
Explanation:
This question involves continuous displacement in various directions. When it becomes difficult to imagine, vector analysis becomes handy.
Let us denote each of the individual displacements by a vector. Consider the unit vectors
as the unit vectors in the direction of East and North respectively.
By simple calculations, we can derive the unit vectors
in the directions North,
South of West and
North of West respectively.
So Total displacement vector = Sum of individual displacement vectors.
Displacement vector = 
Magnitude of Displacement = 
∴ Total displacement = 