Answer:
c
Explanation:
all the atoms must be balanced.
Answer:
The specific heat capacity of the unknown metal is 0.223 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
There is a direct proportional relationship between heat and temperature. The constant of proportionality depends on the substance that constitutes the body as on its mass, and is the product of the specific heat by the mass of the body. So, the equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case, you know:
- Q= 418.6 J
- c= ?
- m= 75 g
- ΔT= 25 C
Replacing:
418.6 J= c* 75 g* 25 C
Solving:

c= 0.223 
<u><em>The specific heat capacity of the unknown metal is 0.223 </em></u>
<u><em></em></u>
<u><em>
</em></u>
<u><em></em></u>
Answer:
Condensation occurs when a gas changes into a liquid.
Explanation:
Condensation is when a gas becomes a liquid. It happens when a gas, like water vapor, cools down. Matter can exist in three different states: solid, liquid or gas.
Answer:
92.72 kJ
Explanation:
2 N₂ (g) + O₂ (g) —-> 2 N₂O
According to question , one mole of N₂O requires 163.2 kJ of heat
Molecular weight of N₂O = 44 gm
25 g N₂O = 25 / 44 mole
25 / 44 mole will require 163.2 x 25 / 44 kJ
= 92.72 kJ
Missing question: volume of <span>solution on the left is 10 mL.
V</span>₁(solution) = 10 Ml.
c₁(solution) = 0.2 M.<span>
V</span>₂(solution)
= ?.<span>
c</span>₂(solution)
= 0.04 M.<span>
c</span>₁ -
original concentration of the solution, before it gets diluted.<span>
c</span>₂
- final concentration of the solution, after dilution.<span>
V</span>₁
- <span>volume to
be diluted.
V</span>₂ - <span>final volume after
dilution.
c</span>₁ · V₁ = c₂ · V₂<span>.
</span>10 mL · 0.2 M = 0.04 M · V₂.
V₂(solution) = 10 mL · 0.2 M ÷ 0.04 M.
V₂(solution) = 50 mL.<span>
</span>