Answer:81.235N
Explanation:
Work=88J
theta=10°
distance=1.1 meters
work=force x cos(theta) x distance
88=force x cos10 x 1.1 cos10=0.9848
88=force x 0.9848 x 1.1
88=force x 1.08328
Divide both sides by 1.08328
88/1.08328=(force x 1.08328)/1.08328
81.235=force
Force=81.235
The inner planets are not colder or larger than the outer ones,
and they're not comprised of gas.
The inner planets are the ones that are made of rock. ( D ).
One of the components that affect the period is gravity (the other is length). This gravity is basically the value of the effective acceleration that acts on the body due to gravity. When the elevator is over free fall, the effective gravity becomes zero. Mathematically this can be visualized as,

Since this value is zero, the period would tend to be infinite,

Therefore the frequency that is inversely proportional to the period would be defined as



In this way there is no frequency on the body which will not generate any oscillation on the body
Answer:
Explanation:
A lava lamp consists of oil, and wax in a glass, and a heat source (a light bulb) placed underneath the glass. When the lamp is turned on the bulb gets hot. As the bulb heats up some of the heat from the bulb is transferred to the glass by radiation.
"Q = ΔU + W" is the equation is used to solve the questions related to "First law of thermodynamics".
<h3> What is the first law of thermodyanamics?</h3>
"First law of thermodynamics" states that "energy" neither created nor destroyed, but it can transfer from "one form of energy" to "another form of energy".
This "First law of thermodynamics" is also called as "law of conversation of energy". The formula for "First law of thermodynamics" of a system is that "change in internal energy of a system" is same as the difference of "heat energy" flows across the " boundaries of a system" and the "work done" on the system.
ΔU = Q - W
Q = ΔU + W
Where, "ΔU" is "change in internal energy", "Q" is "heat transferred and "W" is "work done.
Hence "Q = ΔU + W" is the equation is used to solve the questions related to "First law of thermodynamics".
To know more about the First law of thermodynamics follow
brainly.com/question/15071682