Answer:
Gravitational pull
Explanation:
There are four fundamental forces in nature:
- Gravitational force: it is an attractive force exerted between all objects having mass. Its magnitude is proportional to the product of the masses and inversely proportional to the square of the distance between the objects.
- Electromagnetic force: it is the force exerted between electrically charged object. It can be either attractive ore repulsive. Its magnitude is proportional to the product of the charges and inversely proportional to the square of the distance between the objects.
- Strong nuclear force: it is the force responsible for holding protons and neutrons together in the nuclei of the atoms. It is attractive and acts only on a very short scale.
- Weak nuclear force: it is the force responsible for certain nuclear decay processes (radioactivity).
In this problem, landslides occur when certain masses of terrain are attracted towards the ground - they are attracted because of the gravitational force.
So, the correct answer is
gravitational pull
Answer:
Explanation:
given,
tuning fork vibration = 508 Hz
accelerates = 9.80 m/s²
speed of sound = 343 m/s
observed frequency = 490 Hz


![v_s = v[\dfrac{f_s}{f_o}-1]](https://tex.z-dn.net/?f=v_s%20%3D%20v%5B%5Cdfrac%7Bf_s%7D%7Bf_o%7D-1%5D)
![= 343[\dfrac{508}{490}-1]](https://tex.z-dn.net/?f=%3D%20343%5B%5Cdfrac%7B508%7D%7B490%7D-1%5D)

distance the tunning fork has fallen


=8.1 m
now, time required for the observed will be

now, for the distance calculation


=0.293 m
total distance
= 8.1 + 0.293 = 8.392 m
Answer:
True
Explanation:
When an object is held higher, it has more potential energy because more energy is stored from its higher position to swing further than it would have, had it been held lower.
Light waves are never 'aborted'.
They can be 'absorbed', and I think that's what you mean.
It's what happens when light hits something or goes into it,
and never comes out.
"Absorb" just means "soak up". When a light wave hits something and
gets soaked up in it, it's gone, and never comes out the other side.
The light wave certainly gets changed ... it no longer exists.
The object that absorbs it also gets changed. It soaks up the energy
in the light wave, and it has a little more internal energy (heat) than it
had before the light hit it.
An atomic mass unit (symbolized AMU or amu) is defined as precisely 1/12 the mass of an atom of carbon-12. The carbon-12 (C-12) atom has six protons and six neutrons in its nucleus.