Depends on the elasticity and density of the medium through what it is traveling <span> </span>
No. She would be doing the same amount of work that way. Work is defined to be equal to the force multiplied by the distance. Carrying two bags at a time would cause her to exert twice the effort, so the total amount of work done in the end would still be the same.
The Milky Way galaxy is the one that the sun is a member of, and it contains
our solar system. We're in it, and you can't get much closer than that.
The Milky Way is known to be bigger than your average galaxy, but it's
probably not correct to say that it contains the 'most' stars of any galaxy.
The estimate for the Milky Way is only a few hundred billion stars.
Answer:
<h2>10,000 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass
v is the velocity
From the question we have

We have the final answer as
<h3>10,000 J</h3>
Hope this helps you
As a head-up, it is important to notice that a white dwarf only shines thanks to the stored energy and light, because a white dwarf doesn't have any hydrogen left to perform nuclear fusion.
Now the process:
First, the white dwarf accumulates all the extracted matter from its companion, onto its own surface. This extra matter increases the white dwarf's temperature and density.
After a while, the star reaches about 10 million K, so nuclear fusion can begin. The hydrogen that has been "stolen" from the other star and accumulated in the white dwarf's surface it's used for the fusion, dramatically increasing the star's brightness for a short time, causing what we know as a Nova.
As this fuel its quickly burnt out or blown into space, the star goes back to its natural white dwarf state. Since the white dwarf nor the companion star are destroyed in this process, it can happen countless of times during their lifespan.