Answer:
D.- Using a sterile liquid and eliminating exposure to microorganisms.
Explanation:
Remember that Redi´s experiment is going to be with different jars cover the top. In this case, if the liquid is sterile that means any living thing is present there. so if by passing the time, there are no microorganisms, this is going to be the results that the spontaneous generation does not exist. From a non living liquid there can not produce a living thing.
Answer:
See explanation
Explanation:
The most accurate method of determining the volume of an object, is the water displacement method. It has the peculiar advantage of working well with irregular solids.
There are often errors that prevent exact measurements of the volume of objects. This makes the water displacement method a preferred and easier method of determining the volume of an object.
You have to use the equation q=mcΔT and solve for T(final).
T(final)=(q/mc)+T(initial)
q=the amount of energy absorbed or released (in this case 868J)
m=the mass of the sample (in this case 15.6g)
c= the specific heat capacity of the substance (in this case 2.41 J/g°C)
T(initial)=the initial temperature of the sample (in this case 21.5°C)
When you plug everything in, you should get 44.6°C.
Therefore the final temperature of ethanol is 44.6°C
I hope this helps. Let me know if anything is unclear.
Answer: If it was 3 mol of solute in 2 L of solution it would be 1.5 mol/L.
However when the solute dissolves in the water creating the solution, the volume increases. So 3 mol of solute in 2 L of water creates more than 2 L of solution.
The correct method for making a 3 mol/L solution would be to place some water into a two liter volume container. Dissolve all 3 mol of the solute into the water. Then add water to the 2 L mark. Now there is 3 mol of solute and 2 L of solution.
Explanation: I hope this helps XDDDD
Answer:
Explanation:
The gas ideal law is
PV= nRT (equation 1)
Where:
P = pressure
R = gas constant
T = temperature
n= moles of substance
V = volume
Working with equation 1 we can get

The number of moles is mass (m) / molecular weight (mw). Replacing this value in the equation we get.
or
(equation 2)
The cylindrical container has a constant pressure p
The volume is the volume of a cylinder this is

Where:
r = radius
h = height
(pi) = number pi (3.1415)
This cylinder has a radius, r and height, h so the volume is 
Since the temperatures has linear distribution, we can say that the temperature in the cylinder is the average between the temperature in the top and in the bottom of the cylinder. This is:
Replacing these values in the equation 2 we get:
(equation 2)