Answer:
0.247 J = 247 mJ
Explanation:
From the principle of conservation of energy, the workdone by the applied force, W = kinetic energy change + electric potential energy change.
So, W = ΔK + ΔU =1/2m(v₂² - v₁²) + q(V₂ - V₁) where m = mass of particle = 5.4 × 10⁻² kg, q = charge of particle = 5.10 × 10⁻⁵ C, v₁ = initial speed of particle = 2.00 m/s, v₂ = final speed of particle = 3.00 m/s, V₁ = potential at surface A = 5650 V, V₂ = potential at surface B = 7850 V.
So, W = ΔK + ΔU =1/2m(v₂² - v₁²) + q(V₂ - V₁)
= 1/2 × 5.4 × 10⁻²kg × ((3m/s)² - (2 m/s)²) + 5.10 × 10⁻⁵ C(7850 - 5650)
= 0.135 J + 0.11220 J
= 0.2472 J
≅ 0.247 J = 247 mJ
Answer:
F = 0.64 N
Explanation:
We are given;
Spring constant constant; k = 1.28 N/m
Distance; x = 0.5 m
From Hooke's law, we know that F = kx.
Thus;
F = 1.28 × 0.5
F = 0.64 N
Thus, force it takes to pull the spring back = 0.64 N
Answer:
B. 34.78 m/s
Explanation:
Momentum of a body or an object is given as the product of its velocity and its mass.
Therefore;
Momentum= velocity x mass
But; velocity = ? mass =115 kg , momentum = 4,000 kgm/s
Thus; velocity= momentum/mass
= 4,000/115
= 34.78 m/s
My guess is they need it to turn co2 into oxygen
The cycle of cellular respiration and photosynthesis are important for the life of plants because cellular respiration uses one of the products of photosynthesis (oxygen), and uses it as one of the reactants along with glucose to produce carbon dioxide. These two cycles help maintain a balance for our atmosphere, even though pollution and other factors have disrupted this balance. Hope this helps! :)