Answer:
3.76 m/s
Explanation:
Instantaneous velocity: This can be defined as the velocity of an object in a non uniform motion. The S.I unit is m/s.
v' = dx(t)/dt..................... Equation 1
Where v' = instantaneous velocity, x = distance, t = time.
Given the expression,
x(t) = 28.0 m + (12.4 m/s)t - (0.0450 m/s³)t³
x(t) = 28 + 12.4t - 0.0450t³
Differentiating x(t) with respect to t.
dx(t)/dt = 12.4 - 0.135t²
dx(t)/dt = 12.4 - 0.135t²
When t = 8.00 s.
dx(t)/dt = 12.4 - 0.135(8)²
dx(t)/dt = 12.4 - 8.64
dx(t)/dt = 3.76 m/s.
Therefore,
v' = 3.76 m/s.
Hence, the instantaneous velocity = 3.76 m/s
Answer:
reactants --> products + thermal energy
Explanation:
Heat is absorbed in endothermic reaction.
Answer:
Geology is the study of the Earth that involves the process at Earth, materials of which it is made, and its history.
<u>Geologists combine both laboratory and field data to illustrate the results of their research. Some observations that can the geologist make by working outdoors instead of in a lab are as follows:</u>
- Understanding and exploring the earth's surface closely using geophysical tools.
- Collecting samples by own and make some interpretations at the same time.
- Observation of the landscapes
- Close observation of outcrops
Answer:
The quantitative relationship between heat transfer and temperature change contains all three factors: Q = mcΔT, where Q is the symbol for heat transfer, m is the mass of the substance, and ΔT is the change in temperature. The symbol c stands for specific heat and depends on the material and phase. The specific heat is the amount of heat necessary to change the temperature of 1.00 kg of mass by 1.00ºC. The specific heat c is a property of the substance; its SI unit is J/(kg ⋅ K) or J/(kg ⋅ ºC). Recall that the temperature change (ΔT) is the same in units of kelvin and degrees Celsius. If heat transfer is measured in kilocalories, then the unit of specific heat is kcal/(kg ⋅ ºC).
Explanation:
Answer:
1. W = F d = 20 N * 6 m = 120 J
2. F = W / d = 60 J / 2 m = 30 N
3. d = W / F = 350 J / 85 N = 4.12 m
4. P = W / t = F d / t = 45 N * 9 m / 10 s = 40.5 Watts
5. W = P t = 500 W * 120 sec = 60,000 J
6. t = W / P = 550 J / 310 W = 1.77 sec