To solve this problem,
we can use the Henderson-Hasselbalch Equation which relates the pH to the measure
of acidity pKa. The equation is given as:<span>
<span>pH = pKa + log ([base]/[acid]) ---> 1</span></span>
Where,
[base] = concentration
of C2H3O2
in molarity or moles
<span>[acid] = concentration of HC2H3O2 in molarity or moles</span>
For the sake of easy calculation, let us assume that:
[base] = 1
[acid] = x
<span>
Therefore using equation 1,
4.24 = 4.74 + log (1 / x)
<span>log (1 / x) = - 0.5
1 / x = 0.6065 </span></span>
x =
1.65<span>
The required ratio of C2H3O2 /HC2H3O2 <span>
is 1:1.65 or 3:5. </span></span>
When two atoms of the same element are covalently bonded, the radius of each atom will be half the distance between the two nuclei because they equally attract the electrons. The reason for this trend is that the bigger the radii, the further the distance between the two nuclei. Hope this helps:)
I believe the answer is D.
Scientists are biased, and want to prove their specific hypothesis is right.
I would believe it to be 55g. A -> B YIELDS AB. So, 10g + 45g = 55g.