2, 8,6 because it has to be in a configuration of 2,8,8
Answer:
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Explanation:
The given nuclear reaction shows alpha decay.
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Properties of alpha radiations:
Alpha radiations are emitted as a result of radioactive decay. The atom emit the alpha particles consist of two proton and two neutrons. Which is also called helium nuclei. When atom undergoes the alpha emission the original atom convert into the atom having mass number less than 4 and atomic number less than 2 as compared to parent atom the starting atom.
Alpha radiations can travel in a short distance.
These radiations can not penetrate into the skin or clothes.
These radiations can be harmful for the human if these are inhaled.
These radiations can be stopped by a piece of paper.
₉₂U²³⁸ → ₉₀Th²³⁴ + ₂He⁴ + energy
Answer:
- <u><em>Yes, 200 ml of fluid can be transferred to a 1-quart container.</em></u>
Explanation:
You must compare the two volumes, 200 ml and 1 quart. If 200 ml is less than or equal to 1 quart, then 200 ml of fluid can be transferred to a 1-quart container, else it is not possible.
To compare, the two volumes must be on the same system of units.
Quarts is a measure of volume equivalent to 1/4 of gallon.
One gallon is approximately 3.785 liters.
3.785 liter = 3.785 liter × 1,000 ml/liter
Then, to convert 1 quart to ml use the unit cancellation method:
- (1/4)gallon × 3.785 liter/gallon × 1,000ml / liter = 946.25 ml
Thus, you get that a 1-quart container has volume of 946.25 ml, which allows that 200ml of fluid be transferred to it.
Answer:
The pH value of the mixture will be 7.00
Explanation:
Mono and disodium hydrogen phosphate mixture act as a buffer to maintain pH value around 7. Henderson–Hasselbalch equation is used to determine the pH value of a buffer mixture, which is mathematically expressed as,
![pH=pK_{a} + log(\frac{[Base]}{[Acid]})](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%20%2B%20log%28%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%29)
According to the given conditions, the equation will become as follow
![pH=pK_{a} + log(\frac{[Na_{2}HPO_{4} ]}{[NaH_{2}PO_{4}]})](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%20%2B%20log%28%5Cfrac%7B%5BNa_%7B2%7DHPO_%7B4%7D%20%5D%7D%7B%5BNaH_%7B2%7DPO_%7B4%7D%5D%7D%29)
The base and acid are assigned by observing the pKa values of both the compounds; smaller value means more acidic. NaH₂PO₄ has a pKa value of 6.86, while Na₂HPO₄ has a pKa value of 12.32 (not given, but it's a constant). Another more easy way is to the count the acidic hydrogen in the molecular formula; the compound with more acidic hydrogens will be assigned acidic and vice versa.
Placing all the given data we obtain,

