The total work done by the electric field on the charge is given by the scalar product between the electric force acting on the charge and the displacement of the charge:

where the force is F=qE, d=0.556 and

. Using the value of q and E given by the problem, we find
Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s
If two positive charges are near each other they will repel each other.
1: only half the outlet is switched and the lamp is in the other half
2: the lamp is turned off.
3: The light bulb is burned out
4: the switch might be broken
5: the fuse might be blown
6: the electricity might be off
Devon will travel 180m in 12 seconds. All you have to do is multiply 15 by 12. Hope this helps