The distance between two basket ball sized aluminium balls is 9714 m.
Explanation:
Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force .
Coulomb's law formula => F = (k * Qb1 * Qb2)/r²
Given data :-
charge on ball 1 Qb1 = 6C
charge on ball 2 Qb2 = 14C
Force exerted F = 8000 N
k = 8.988 x 10^9 Nm²C−²(coulomb's constant).
substituting given values in the coulomb's formula
8000 = (( 8.988 x 10^9)*6*14)/r²
shifting r and 8000 to other sides
r² = (756 * 10^9)/8000
r = 9714 m.
Therefore the distance between two balls is r = 9714 m.
The most probable reason why the magnets won't stick on the refrigerator is that the body of the refrigerator and the magnets have like poles. If both have negative or both have positive poles facing each other, they will repel. In principle, magnets are attracted to opposite poles and like poles repel.

The momentul of the system preserves:
Ok, we found the speed after the collision.
Now, because the impact is plastic, it produces heat, sound energy and who knows what other forms of energy. We denote all this wasted energy with

.
Now, we write the energy conservation law:

From the above equation, you find

, and then conclude that the sound energy can certainly not be greater than this.