First let us determine the electronic configuration of
Bromine (Br). This is written as:
Br = [Ar] 3d10 4s2 4p5
Then we must recall that the greatest effective nuclear
charge (also referred to as shielding) greatly increases as distance of the
orbital to the nucleus also increases. So therefore the electron in the
farthest shell will experience the greatest nuclear charge hence the answer is:
<span>4p orbital</span>
Answer:
The number of lines possible for SO2 is 3
Explanation:
The following Procedure should be followed when calculating the number of vibrational modes:-
- Identify if the given molecule is either linear or non-linear
- Calculate the number of atoms present in your molecule
- Place the value of n in the formula and solve.
SO2 is a non-linear molecule because it contains a lone pair which causes the molecule to bent in shape hence, The mathematical formula for calculating the number of non-linear molecule in a infrared region is (3n - 6) here n is the number of atoms in molecule.
hence for Sulphur Dioxide (SO2), n will be 3
<u> Therefore, The number of lines possible for SO2 is (3*3) - 6 = 3</u>
Most of the surface of the earth is covered with water and looks blue from space.
Answer:
- [HOCl] = 0.00909 mol/liter
- [H₂O] = 0.03901 mol/liter
- [Cl₂O] = 0.02351 mol/liter
Explanation:
<u />
<u>1. Chemical reaction:</u>

<u>2. Initial concentrations:</u>
i) 1.3 g H₂O
- Number of moles = 1.3g / (18.015g/mol) = 0.07216 mol
- Molarity, M = 0.07216 mol / 1.5 liter = 0.0481 mol/liter
ii) 2.2 g Cl₂O
- Number of moles = 2.2 g/ (67.45 g/mol) = 0.0326 mol
- Molarity = 0.0326mol / 1.5 liter = 0.0217 mol/liter
<u>3. ICE (Initial, Change, Equilibrium) table</u>

I 0.0481 0.0326 0
C -x -x +x
E 0.0481-x 0.0326-x x
<u />
<u>4. Equilibrium expression</u>
![K_c=\dfrac{[HOCl]^2}{[H_2O].[Cl_2O]}](https://tex.z-dn.net/?f=K_c%3D%5Cdfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D.%5BCl_2O%5D%7D)

<u />
<u>5. Solve:</u>

Use the quadatic formula:

The positive result is x = 0.00909
Thus the concentrations are:
- [HOCl] = 0.00909 mol/liter
- [H₂O] = 0.0481 - 0.00909 = 0.03901 mol/liter
- [Cl₂O] = 0.0326 - 0.00909 = 0.02351 mol/liter
Benzene at the same prssure ie the horizontal dotted line, benzene requires the minimal temperature hence its most volatile