Answer:
The average velocity is 0.203 m/s
Explanation:
Given;
initial displacement, x₁ = 20 yards = 18.288 m
final displacement, x₂ = ¹/₃ x 18.288 = 6.096 m
change in time between 5:02 PM and 5:03 PM, Δt = 3 mins - 2 mins = 1 min = 60 s
The average velocity is given by;
V = change in displacement / change in time
V = (x₂ - x₁) / Δt
V = (18.288 - 6.096) / 60
V = 0.203 m/s
Therefore, the average velocity is 0.203 m/s
Answer:
e.Fire resistance,Inexpensive,Non-toxic.
Explanation:
Desirable hydraulic property of fluid as follows
1. Good chemical and environment stability
2. Low density
3. Ideal viscosity
4. Fire resistance
5. Better heat dissipation
6. Low flammability
7. Good lubrication capability
8. Low volatility
9. Foam resistance
10. Non-toxic
11. Inexpensive
12. Demulsibility
13. Incompressibility
So our option e is right.
Answer:
t= 4.5 mm
Explanation:
Given that
P = 520 KPa ( gauge)
Maximum allowable normal stress ,σ= 150
d= 2.6 m
Wall thickness = t
The normal stress for pressure vessel given as
( hoop stress)
We always take maximum stress for safe design.

Now by putting the values

t= 4.5 mm
So the minimum thickness, t, of the wall is 4.5 mm
The answer is D-all choices
Answer:
Explanation:
Given
Temperature of solid 
Einstein Temperature 
Heat Capacity in the Einstein model is given by
![C_v=3R\left [ \frac{T_E}{T}\right ]^2\frac{e^{\frac{T_E}{T}}}{\left ( e^{\frac{T_E}{T}}-1\right )^2}](https://tex.z-dn.net/?f=C_v%3D3R%5Cleft%20%5B%20%5Cfrac%7BT_E%7D%7BT%7D%5Cright%20%5D%5E2%5Cfrac%7Be%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D%7D%7B%5Cleft%20%28%20e%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D-1%5Cright%20%29%5E2%7D)

Substitute the values

