Correct answer is option E. No dimensions
As we know formula Pressure (P) is
also,
- Dimensional formula of <em>Pressure is </em>

- Dimensional formula of <em>length is L </em>
- Dimensional formula of <em>mass is M</em>
- Dimensional formula of <em>velocity is </em>

So, as given W=
Dimensional formula of W =
since all terms get cancelled
Work is dimensionless i.e no dimensions
Learn more about dimensions here brainly.com/question/20351712
#SPJ10
Answer:
1. High friction
2. High extrusion temperature
Explanation:
Surface cracking on extruded products are defects or breakage on the surface of the extruded parts. Such cracks are inter granular.
Surface cracking defects arises from very high work piece temperature that develops cracks on the surface of the work piece. Surface cracking appears when the extrusion speed is very high, that results in high strain rates and generates heat.
Other factors include very high friction that contributes to surface cracking an d chilling of the surface of high temperature billets.
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft